Skip to main content
Log in

Analysis of multiple robotic assemblies by cooperation of multimobile micromanipulation systems (M4S)

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This paper presents different analyses by cooperation of multimobile micromanipulation systems (M4S) for robotic microassembly where assembly is performed in a grid pattern by dividing it into different zones. To cater this need, a new design of M4S for robotic assembly is proposed where different peg-in-hole assemblies are carried out. For attempting the different combinations by cooperation of M4S, a novel algorithm is developed which provides a solution for robotic microassembly in a more efficient and precise manner within less time. Experientially, it is proved that this novel design of M4S is capable of performing the different manipulation tasks of miniature parts. Different analyses prove its potentiality of robotic assembly in industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. Mok SM, Wu CH, Lee DT (2000) A system for analyzing automatic assembly and disassembly operations, IEEE International Conference on Robotics & Automation (ICRA). CA, San Francisco, pp 3695–3700

    Google Scholar 

  2. Huang SJ, Tsai JP (2005) Robotic automatic assembly system for random operating condition. Int J Adv Manuf Technol 27:334–344

    Article  Google Scholar 

  3. Valdastria P et al (2006) Micromanipulation, communication and swarm intelligence issues in a swarm micro robotic platform. Robot Auton Syst 54:789–804

    Article  Google Scholar 

  4. Okamura AM (2009) Haptic feedback in robot-assisted minimally invasive surgery. Wolters Kluwer Health 19:102–107. doi:10.1097/MOU.0b013e32831a478c

    Google Scholar 

  5. Ouyang PR, Tjiptoprodjo RC, Zhang WJ, Yang GS (2008) Micro-motion devices technology: the state of arts review. Int J Adv Manuf Technol 38:463–478. doi:10.1007/s00170-007-1109-6

    Article  Google Scholar 

  6. Yi Q, Brockett A, Ma Y, Razali A, Zhao J, Harrison C, Pan W, Dai X, Loziak D (2010) Micro-manufacturing: research, technology outcomes and development issues. Int J Adv Manuf Technol 47:821–837. doi:10.1007/s00170-009-2411-2

    Article  Google Scholar 

  7. Koustoumpardis P, Zacharia P, Aspragathos N (2006) Intelligent robotic handling of fabrics towards sewing, industrial robotics: programming, simulation and applications, Edited by Low Kin Huat, ISBN 3–86611–286-6, 559–702

  8. Bruzzone L, Bozzini G (2010) A flexible joints micro assembly robot with metamorphic gripper. Assem Autom 30(3):240–247

    Article  Google Scholar 

  9. Choi HR et al. Micro robot actuated by soft actuators based on dielectric elastomer, IEEE International Conference on Intelligent Robot and System (IROS), Switzerland, 30 September- 4 October, 2002, pp. 1730–1735.

  10. Gauthier M, Lambert P, Regnier S (2010) Micro handling and micromanipulation strategies, Microrobotics for Micromanipulation, Editor N. Chaillet and S. Regnier, pp. 179–243

  11. Dechev N, Cleghorn WL, Mills JK (2004) Micro assembly of 3-D microstructures using a compliant passive micro gripper. Journal of Micro Electro Mechanical System 13(2):176–189

    Article  Google Scholar 

  12. Havlík S (2011) Passive compliant mechanisms for robotic (micro) devices, 13th World Congress in Mechanism and Machine Science, Guanajuato, México, 1–7

  13. Shahinpoor M, Kim KJ (2005) Ionic polymer–metal composites: IV. Industrial and medical applications. Smart Mater Struct 14:197–214

    Article  Google Scholar 

  14. Jain RK, Patkar US, Majumder S (2009) Micro gripper for micro manipulation using IPMCs. J Sci Ind Res 68:23–28

    Google Scholar 

  15. Jain RK, Majumder S, Dutta A (2013) SCARA based peg-in-hole assembly using compliant IPMC micro gripper. Robot Auton Syst 61(3):297–311

    Article  Google Scholar 

  16. Lin CM, Fan CH, Lan CC (2009) A shape memory alloy actuated micro gripper with wide handling ranges, IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Singapore, 12–17

  17. Kim DH, Kim B, Kang H (2004) Development of a piezoelectric polymer-based sensorized micro gripper for micro assembly and micromanipulation. J Micro Syst Technol 10(4):275–280

    Article  Google Scholar 

  18. Jang MJ, Chen CL, Lee JR (2005) Modeling and control of a piezoelectric actuator driven system with asymmetric hysteresis, IEEE International Conference on Systems and Signals, 676–681

  19. Rakotondrabe M, Ivan IA (2011) Development and force/position control of a new hybrid thermo-piezoelectric micro gripper dedicated to micromanipulation tasks. IEEE Trans Autom Sci Eng 8(4):824–834

    Article  Google Scholar 

  20. Zhang YL, Han ML, Yu MY, Shee CY, Ang WT (2012) Automatic hysteresis modeling of piezoelectric micromanipulator in vision-guided micromanipulation systems. IEEE/ASME Trans Mechatronics 17(3):547–553

    Article  Google Scholar 

  21. Ghosh B, Jain RK, Majumder S (2013) Control of voltage signal for piezoelectric actuator towards micro manipulation, IEEE International Conference on Communication and Signal Processing (ICCSP’2013), Melmaruvathur, Kanchipuram, TamilNadu, India, 922–926

  22. Jain RK, Saha S, Majumder S (2013) Development of piezoelectric actuator based compliant micro gripper for robotic peg-in-hole assembly, IEEE International Conference on Robotics and Bio-mimetics (IEEE-ROBIO-2013), Shenzhen, China, 1562–1567

  23. Jain RK, Majumder S, Ghosh B and Saha S (2014) Micro manipulation by a compliant piezoelectric micro gripper towards robotic micro assembly, 5th International & 26th All India Manufacturing Technology, Design and Research Conference (AIMTDR 2014), IIT Guwahati, Assam, India, 71–1/6

  24. Jain RK, Majumder S, Ghosh B, Saha S (2015) Design and manufacturing of mobile micro manipulation system with a compliant piezoelectric actuator based micro gripper. J Manuf Syst 35:76–91

    Article  Google Scholar 

  25. P. Helin, M. Calin, V. Sadaune, N. Chaillet, C. Druon, A. Bourjault (1997) Micro-conveying station for assembly of micro components, IEEE/RSJ International Conference on Intelligent Robots and Systems, Grenoble, France, 306–1311

  26. Fung KM, Elhaj I, Li WJ, Xi N (2002) A 2-D PVDF force manipulation sensing system for micro and micro-assembly, IEEE International Conference on Robotics Automation, Washington, DC, USA, 1489–1494

  27. Popa DO, Kang BH, Wen JT (2003) Dynamic modeling and input shaping of thermal bimorph MEMS actuators, IEEE International Conference on Robotics and Automation (ICRA), Taipei, Taiwan, 1470–1474

  28. Dong W, Lu X, Liu M, Cui Y, Wang J (2007) Measurement on the actuating and sensing capability of a PZT micro cantilever. Meas Sci Technol 18:601–608

    Article  Google Scholar 

  29. Rakotondrabe M, Agnus J, Rabenorosoa K, Chaillet N (2009) Characterization, modeling and robust control of a nonlinear 2-DOF piezo cantilever for micromanipulation/micro assembly, IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, 767–774

  30. Hoxhold B, Wrege J, Biitefisch S, Burisch A, Raatz A, Hesselbach J, Biittgenbach S (2011) Tools for handling and assembling of micro parts, Chapter 16 of Design and Manufacturing of Active Microsystems. Microtechnology and MEMS:287–308

  31. Feng F, Cui Y, Xue F, Wu L (2012) Design of a new piezo-electric micro-gripper based on flexible magnifying mechanism. Appl Mech Mater 201(202):907–911

    Article  Google Scholar 

  32. Noori H, Karimi E (2013) Effect of input voltage frequency on micro-gripper with piezoelectric actuator, RSI/ISM International Conference on Robotics and Mechatronics, Tehran, Iran, 13–15

  33. Wang H, Yang Q, Dong HM (2013) A monolithic compliant piezoelectric driven micro gripper: design, modeling, and testing. IEEE/ASME Trans Mechatron 18(1):138–147

    Article  Google Scholar 

  34. Jain RK, Majumder S, Ghosh B (2014) Design and analysis of piezoelectric actuator for micro gripper, International Journal of Mechanics and Materials in Design, published online DOI: 10.1007/s10999-014-9264-z.

  35. Zaeh MF, Jacob D, Ehrenstrasser M, Schilp J (2003) Hybrid micro-assembly system for tele-operated and automated micromanipulation. Am Soc Precis Eng 28:119–124

    Google Scholar 

  36. Agnus J, Nectoux P, Chaillet N (2005) Overview of micro grippers and design of a micro manipulation station based on a MMOC micro gripper, IEEE International Symposium on Computational Intelligence in Robotics and Automation, Espoo, Finland, 27–30 117–123

  37. Huang X, Lv X, Wang M (2006) Development of a robotic micro assembly system with multi-manipulator cooperation, IEEE International Conference on Mechatronics and Automation, Luoyang, China, 1197–1201

  38. Liaw HC, Shirinzadeh B, Smith J (2008) Robust motion tracking control of piezo-driven flexure-based four-bar mechanism for micro/nano manipulation. Mechatronics 18(2):111–120

    Article  Google Scholar 

  39. Chen H, Wang J, Zhang G, Fuhlbrigge T, Kock S (2009) High-precision assembly automation based on robot compliance. Int J Adv Manuf Technol 45:999–1006. doi:10.1007/s00170-009-2041-8

    Article  Google Scholar 

  40. D. Gendreau, M. Rakotondrebe, P. Lutz (2010) Modular design method applied to a micro manipulation station, 7th International Workshop on Micro Factories (IWMF), Daejeon, Korea, 24–27

  41. Chiou R, Kwon Y (2011) Remotely adjustable robotic grip force for the network-based assembly automation. Int J Adv Manuf Technol 54:1145–1154. doi:10.1007/s00170-010-2979-6

    Article  Google Scholar 

  42. Hoffman KL, Wood RJ (2011) Myriapod-like ambulation of a segmented micro robot. Autonomous Robot 31:103–114

    Article  Google Scholar 

  43. Tamadazte B, Paindavoine M, Agnus J, Pétrini V, Le-Fort Piat N (2012) 4-DOF piezoelectric micro gripper equipped with a smart CMOS camera. J Micro Electromech Syst 21(2):256–258

    Article  Google Scholar 

  44. Xu Q (2013) Adaptive discrete-time sliding mode impedance control of a piezoelectric micro gripper. IEEE Trans Robot 29(3):663–673

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Jain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, R.K., Majumder, S., Ghosh, B. et al. Analysis of multiple robotic assemblies by cooperation of multimobile micromanipulation systems (M4S). Int J Adv Manuf Technol 91, 3033–3050 (2017). https://doi.org/10.1007/s00170-016-9969-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-9969-2

Keywords

Navigation