Skip to main content
Log in

Induction heating and cryogenic cooling in single point incremental forming of Ti-6Al-4V: process setup and evolution of microstructure and mechanical properties

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Hot single point incremental forming (SPIF) with induction heating and cryogenic cooling has been applied to form the Ti-6Al-4V sheets. The influence of both the forming temperature and the cooling rate after deformation, on microstructure evolution and microhardness of Ti-6Al-4V sheets, has been extensively studied. We propose the use and development of a new system of heating by induction. The system is composed of a medium–high frequency generator and a continuously water-cooled heating head, which is placed under the sheet and linked axially to the punch movement, heating the material locally by generating an eddy current within the material. Furthermore, a cooling system integrated with the movement of the forming punch allows us to apply a cryogenic fluid to the recently deformed sheet metal. Both localized heating and cooling systems are particularly suitable for such a process as SPIF, whose primary characteristic is the incremental forming of localized sheet zones. The meta-dynamic and static recrystallization processes have been suppressed in the sheet material, evident by the final microstructure and mechanical properties. Finally, a comparison between parts is made, both with and without cooling during hot SPIF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Filice L, Fratini L, Micari F (2002) Analysis of material formability in incremental forming. CIRP Ann Manuf Technol 51:199–202. doi:10.1016/S0007-8506(07)61499-1

    Article  Google Scholar 

  2. Jackson K, Allwood J (2009) The mechanics of incremental sheet forming. J Mater Proc Technol 209(3):1158–1174. doi:10.1016/j.jmatprotec.2008.03.025

    Article  Google Scholar 

  3. Gate S, Ou H, McCartney G (2016) Review on the influence of process parameters in incremental sheet forming. Int J Adv Manuf Technol:1–21. doi:10.1007/s00170-016-8426-6

  4. Xu D, Wu W, Malhotra R, Chena J, Lu B, Cao J (2013) Mechanism investigation for the influence of tool rotation and laser surface texturing (LST) on formability in single point incremental forming. Int J Mach Tools Manuf 73:37–46. doi:10.1016/j.ijmachtools.2013.06.007

    Article  Google Scholar 

  5. Centeno G, Bagudanch I, Martínez-Donaire AJ, García-Romeu ML, Vallellano C (2014) Critical analysis of necking and fracture limit strains and forming forces in single-point incremental forming. Mat Des 63:20–29. doi:10.1016/j.matdes.2014.05.066

    Article  Google Scholar 

  6. Hirt G, Ames J, Bambach M, Kopp R (2004) Forming strategies and process modelling for CNC incremental sheet forming. CIRP Ann Manuf Technol 1:203–206. doi:10.1016/S0007-8506(07)60679-9

    Article  Google Scholar 

  7. Li J, Shen J, Wang B (2013) A multipass incremental sheet forming strategy of a car taillight bracket. Int J Adv Manuf Technol 57:2229–2236. doi:10.1007/s00170-013-5179-3

    Google Scholar 

  8. Lingam R, Prakash O, Belk JH, Reddy NV (2016) Automatic feature recognition and tool path strategies for enhancing accuracy in double sided incremental forming. Int J Adv Manuf Technol; 1–17. doi: 10.1007/s00170-016-8880-1.

  9. Jeswiet J, Micari F, Hirt G, Bramley A, Duflou J, Allwood J (2005) Asymmetric single point incremental forming of sheet metal. CIRP Ann Manuf Technol 54(2):88–114. doi:10.1016/S0007-8506(07)60021-3

    Article  Google Scholar 

  10. Vanhove H, Mohammad AS, Guo Y, Duflou JR (2014) High-speed single point incremental forming of an automotive aluminium alloy. Key Eng Mat 622-623:433–439. doi:10.4028/www.scientific.net/KEM.622-623.433

    Article  Google Scholar 

  11. Ambrogio G, Gagliardi F, Bruschi S, Filice L (2013) On the high-speed single point incremental forming of titanium alloys. CIRP Ann Manuf Technol 62:243–246. doi:10.1016/j.cirp.2013.03.053

    Article  Google Scholar 

  12. Allwood JM, Braun D, Music O (2013) The effect of partially cut-out blanks on geometric accuracy in incremental sheet forming. J Mater Proc Technol 210:1501–10. doi: dx.doi.org/10.1016/j.jmatprotec.2010.04.008

  13. Hussain G, Gao L, Zhang Y (2008) Formability evaluation of pure titanium sheet in the cold incremental forming process. Int J Adv Manuf Technol 37:920–926. doi:10.1007/s00170-007-1043-7

    Article  Google Scholar 

  14. Liu J, Tan MJ, Wollmar Jarfors AE, Aue-u-lan Y, Castagne S (2010) Formability in AA5083 and AA6061 alloys for light weight applications. Mat Des 31:S66–S70. doi:10.1016/j.matdes.2009.10.052

    Article  Google Scholar 

  15. Fan G, Sun F, Meng X, Gao L, Tong G (2010) Electric hot incremental forming of Ti-6Al-4V titanium sheet. Int J Adv Manufact Technol 49(9):941–947. doi:10.1007/s00170-009-2472-2

    Article  Google Scholar 

  16. Van Sy L, Nam NT (2013) Hot incremental forming of magnesium and aluminum alloy sheets by using direct heating system. J Eng Manuf 227(8):1099–1110. doi:10.1177/0954405413484014

    Article  Google Scholar 

  17. Palumbo G, Brandizzi M (2012) Experimental investigations on the single point incremental forming of a titanium alloy component combining static heating with high tool rotation speed. Mat Des 40:43–51. doi:10.1016/j.matdes.2012.03.031

    Article  Google Scholar 

  18. Xu DK, Lu B, Cao TT, Zhang H, Chen J, Long H, Cao J (2016) Enhancement of process capabilities in electrically-assisted double sided incremental forming. Mat Des 92:268–280. doi:10.1016/j.matdes.2015.12.009

    Google Scholar 

  19. Ji YH, Park JJ (2008) Formability of magnesium AZ31 sheet in the incremental forming at warm temperature. J Mater Proc Technol 201:354–358. doi:10.1016/j.jmatprotec.2007.11.206

    Article  Google Scholar 

  20. Ambrogio G, Filice L, Manco GL (2008) Warm incremental forming of magnesium alloy AZ31. CIRP Ann Manuf Technol 57:257–260. doi:10.1016/j.cirp.2008.03.066

    Article  Google Scholar 

  21. Duflou JR, Callebaut B, Verbert J, De Baerdemaeker H (2007) Laser assisted incremental forming: formability and accuracy improvement. CIRP Ann Manuf Technol 56:273–276. doi:10.1016/j.cirp.2007.05.063

    Article  Google Scholar 

  22. Göttmann A, Bailly D, Bergweiler G, Bambach M, Stollenwerk J, Hirt G (2013) A novel approach for temperature control in SPIF supported by laser and resistance heating. Int J Adv Manuf Technol 67:2195–2205. doi:10.1007/s00170-012-4640-z

    Article  Google Scholar 

  23. Otsu M, Matsuo H, Matsuda M, Takashima K (2014) Friction stir incremental forming of aluminum alloy sheets. Steel Res Int 81:942–945. doi:10.1016/j.proeng.2014.10.327

    Google Scholar 

  24. Xu D, Wu W, Malhotra R, Chen J, Lu B, Cao J (2013) Mechanism investigation for the influence of tool rotation and laser surface texturing (LST) on formability in single point incremental forming. Int J Mach Tools Manuf 73:37–46. doi:10.1016/j.ijmachtools.2013.06.007

    Article  Google Scholar 

  25. Fan G, Gao L, Hussain G, Wu Z (2008) Electric hot incremental forming: a novel technique. Int J Mach Tools Manuf 48:1688–1692. doi:10.1016/j.ijmachtools.2008.07.010

    Article  Google Scholar 

  26. Ambrogio G, Filice L, Gagliardi F (2012) Formability of lightweight alloys by hot incremental sheet forming. Mat Des 34:501–508. doi:10.1016/j.matdes.2011.08.024

    Article  Google Scholar 

  27. Xu D, Lu B, Cao T, Chen J, Long H, Cao J (2014) A comparative study on process potentials for frictional stir-welding and electric hot-assisted incremental sheet forming. Proc Eng 2014;81:2324–9. doi:10.1016/j.proeng.2014.10.328.

  28. Della Torre E, Magnetic hysteresis. Wiley-IEEE Press Home, 2005.

  29. Donachie M. Titanium: a technical guide. The Materials Information Society 2004 Ohio (USA).

  30. Ambrogio G, Bruschi S, Gagliardi F, Ghiotti A, Filice L (2014) Surface and microstructure considerations in high speed single point incremental forming of Ti6Al4V sheets. Key Eng Mater 611-612:1071–1078

    Article  Google Scholar 

  31. Murty SN, Nayan N, Kumar P, Narayanan PR, Sharma SC, George KM (2014) Microstructure–texture–mechanical properties relationship in multi-pass warm rolled Ti–6Al–4V alloy. Mat Sci Eng A 589:174–181. doi:10.1016/j.msea.2013.09.087

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Gagliardi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ambrogio, G., Gagliardi, F., Chamanfar, A. et al. Induction heating and cryogenic cooling in single point incremental forming of Ti-6Al-4V: process setup and evolution of microstructure and mechanical properties. Int J Adv Manuf Technol 91, 803–812 (2017). https://doi.org/10.1007/s00170-016-9794-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-9794-7

Keywords

Navigation