Skip to main content
Log in

Subsurface deformation of germanium in ultra-precision cutting: characterization of micro-Raman spectroscopy

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Germanium is widely used for infrared components and high-speed transistors. Ultra-precision single-point diamond turning (SPDT) can be employed to achieve its nanometric surface, while subsurface damage has a significant influence on surface integrity due to its brittle feature. This study investigated its subsurface deformation after SPDT. A characterization model of micro-Raman spectroscopy was established with the aim to characterize the subsurface deformation, including phase transformation and residual stress, where the transformation from single crystal structure to amorphous structure is dominant. A spectral fitting method was utilized to analyze the variation of subsurface deformation in various machining parameters. The degenerated single crystal Raman peak was widened due to anisotropic stress. It was discovered that the turning operation at a moderately low spindle speed and tool feed rate reduces phase transformation and residual stress based on the value of Raman ratio and Raman shift. These findings provided significant basis for the manufacturing process of optical components with good surface integrity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blake PN, Scattergood RO (1990) Ductile-regime machining of germanium and silicon. J Am Ceram Soc 73(4):949–957

    Article  Google Scholar 

  2. Yan J, Maekawa K, Tamaki J, Kubo A (2004) Experimental study on the ultraprecision ductile machinability of single-crystal germanium. JSME International Journal Series C 47(1):29–36

    Article  Google Scholar 

  3. Liu K, Li XP, Liang SY (2007) The mechanism of ductile chip formation in cutting of brittle materials. Int J Adv Manuf Technol 33(9):875–884. doi:10.1007/s00170-006-0531-5

    Article  Google Scholar 

  4. Neo WK, Kumar AS, Rahman M (2012) A review on the current research trends in ductile regime machining. Int J Adv Manuf Technol 63(5–8):465–480

    Article  Google Scholar 

  5. Fang FZ, Venkatesh VC (1998) Diamond cutting of silicon with nanometric finish. CIRP Ann Manuf Technol 47(1):45–49. doi:10.1016/S0007-8506(07)62782-6

    Article  Google Scholar 

  6. Bradby JE, Williams JS, Wong-Leung J, Swain MV, Munroe P (2002) Nanoindentation-induced deformation of Ge. Appl Phys Lett 80(15):2651–2653. doi:10.1063/1.1469660

    Article  Google Scholar 

  7. Liu X, DeVor RE, Kapoor SG (2006) An analytical model for the prediction of minimum chip thickness in micromachining. J Manuf Sci Eng 128(2):474. doi:10.1115/1.2162905

    Article  Google Scholar 

  8. Liu K, Li X, Liang SY (2004) Nanometer-scale ductile cutting of tungsten carbide. J Manuf Process 6(2):187–195

    Article  Google Scholar 

  9. Fang FZ, Wu H, Liu YC (2005) Modelling and experimental investigation on nanometric cutting of monocrystalline silicon. Int J Mach Tools Manuf 45(15):1681–1686. doi:10.1016/j.ijmachtools.2005.03.010

    Article  Google Scholar 

  10. Zarudi I, Zhang LC (1998) Effect of ultraprecision grinding on the microstructural change in silicon monocrystals. J Mater Process Technol 84(1–3):149–158. doi:10.1016/S0924-0136(98)00090-9

    Article  Google Scholar 

  11. Yan J, Asami T, Kuriyagawa T (2008) Nondestructive measurement of machining-induced amorphous layers in single-crystal silicon by laser micro-Raman spectroscopy. Precis Eng 32(3):186–195. doi:10.1016/j.precisioneng.2007.08.006

    Article  Google Scholar 

  12. Zhu P, Fang F (2012) Molecular dynamics simulations of nanoindentation of monocrystalline germanium. Appl Phys A-Mater 108:415–421

    Article  Google Scholar 

  13. Lai M, Zhang X, Fang F, Wang Y, Feng M, Tian W (2013) Study on nanometric cutting of germanium by molecular dynamics simulation. Nanoscale Res Lett 8:13–22

    Article  Google Scholar 

  14. Yan J, Maekawa K, Tamaki J, Kubo A (2004) Experimental study on the ultraprecision ductile machinability of single-crystal germanium. JSME Int J Ser C Mech Syst Mach Elem Manuf 47(1):29–36. doi:10.1299/jsmec.47.29

    Article  Google Scholar 

  15. Morris JC, Callahan DL, Kulik J, Patten JA, Scattergood RO (1995) Origins of the ductile regime in single-point diamond turning of semiconductors. J Am Ceram Soc 78(8):2015–2020

    Article  Google Scholar 

  16. Alfaro-Calderón P, Cruz-Irisson M, Wang-Chen C (2008) Theory of Raman scattering by phonons in germanium nanostructures. Nanoscale Res Lett 3(2):55–59. doi:10.1007/s11671-007-9114-0

    Article  Google Scholar 

  17. Fang F, Liu Y (2004) On minimum exit-burr in micro cutting. J Micromech Microeng 14:984

    Article  Google Scholar 

  18. Nakasuji T, Kodera S, Hara S, Matsunaga H, Ikawa N, Shimada S (1990) Diamond turning of brittle materials for optical components. CIRP Annals-Manufacturing Technology 39(1):89–92

    Article  Google Scholar 

  19. Oliver D (2010) Nanoindentation-induced deformation mechanisms in germanium. The Australian National University, Canberra

  20. Yan J, Asami T, Harada H, Kuriyagawa T (2009) Fundamental investigation of subsurface damage in single crystalline silicon caused by diamond machining. Precis Eng 33(4):378–386. doi:10.1016/j.precisioneng.2008.10.008

    Article  Google Scholar 

  21. Cerdeira F, Buchenauer CJ, Pollak FH, Cardona M (1972) Stress-induced shifts of first-order Raman frequencies of diamond- and zinc-blende-type semiconductors. Phys Rev B 5(2):580–593. doi:10.1103/PhysRevB.5.580

    Article  Google Scholar 

  22. Tanikella BV, Somasekhar AH, Sowers AT, Nemanich RJ, Scattergood RO (1996) Phase transformations during microcutting tests on silicon. Appl Phys Lett 69(19):2870–2872. doi:10.1063/1.117346

    Article  Google Scholar 

  23. Lai M, Zhang X, Fang F (2013) Nanoindentation-induced phase transformation and structural deformation of monocrystalline germanium: a molecular dynamics simulation investigation. Nanoscale Res Lett 8:353

    Article  Google Scholar 

  24. Cheung CF, Lee WB (2000) A theoretical and experimental investigation of surface roughness formation in ultra-precision diamond turning. International Journal of Machine Tools & Manufacture 40(7):979–1002

    Article  Google Scholar 

  25. Gogotsi Y, Zhou G, Ku S-S, Cetinkunt S (2001) Raman microspectroscopy analysis of pressure-induced metallization in scratching of silicon. Semicond Sci Technol 16(5):345–352

    Article  Google Scholar 

  26. Oliver D, Bradby J, Williams J, Swain M, Munroe P (2008) Thickness-dependent phase transformation in nanoindented germanium thin films. Nanotechnology 19:1–8

    Google Scholar 

  27. Kailer A, Nixkel X, Gogotsi T (1999) Raman microspectroscopy of nanocrystalline and amorphous phases in hardness indentations. J Raman Spectrosc 30:939–946

    Article  Google Scholar 

  28. Jamieson J (1963) Crystal structures at high pressures of metallic modifications of silicon and germanium. Science 139:762–764

    Article  Google Scholar 

  29. Gogotsi Y, Baek C, Kirscht F (1999) Raman microspectroscopy study of processing induced phase transformations and residual stress in silicon. Semicond Sci Technol 14(10):936

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Zhang, X. Subsurface deformation of germanium in ultra-precision cutting: characterization of micro-Raman spectroscopy. Int J Adv Manuf Technol 91, 213–225 (2017). https://doi.org/10.1007/s00170-016-9749-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-9749-z

Keywords

Navigation