Skip to main content
Log in

Multi-response optimization of R2R gravure printing using orthogonal array and principal component analysis as a weighting factor

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Control over the quality of roll-to-roll gravure-printed silver-nanoparticle electrodes such as continuity, line width, and thickness is of importance to create high-resolution patterns of low resistance. In this regard, the multi-response optimization of gravure printing is required for industrial practice. To address this problem, the Taguchi method coupled with principal component analysis has been applied for multi-objective optimization of roll-to-roll gravure printing of silver-nanoparticle electrode to attain optimal condition within design space. The three-quality characteristics including continuity, pattern line width, and pattern thickness were simultaneously considered for optimization. The process parameters with three levels considered are ink viscosity, air nip pressure, and printing speed. First, Taguchi method was utilized to determine single-objective optimization. Then, the signal-to-noise ratios obtained from Taguchi method were used in principal component analysis to define a weighting factor of three-quality characteristics for multi-objective optimization. Finally, experiments were conducted to evaluate the proposed method, and the results demonstrate an improvement to the well-defined line width, thickness, and continuity of silver-nanoparticle electrodes under optimal parameter settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pudas M, Hagberg J, Leppävuori S (2004) Printing parameters and ink components affecting ultra-fine-line gravure-offset printing for electronics applications. J Eur Ceram Soc 24(10–11):2943–2950. doi:10.1016/j.jeurceramsoc.2003.11.011

    Article  Google Scholar 

  2. Benjamin Thomas M, Tim C, Davide D, Chris P (2016) Flexographic printing of ultra-thin semiconductor polymer layers. Translational Materials Research 3(1):015001

    Article  Google Scholar 

  3. Hösel M, Søndergaard RR, Angmo D, Krebs FC (2013) Comparison of fast roll-to-roll flexographic, inkjet, flatbed, and rotary screen printing of metal back electrodes for polymer solar cells. Adv Eng Mater 15(10):995–1001. doi:10.1002/adem.201300011

    Google Scholar 

  4. Søndergaard R, Hösel M, Angmo D, Larsen-Olsen TT, Krebs FC (2012) Roll-to-roll fabrication of polymer solar cells. Materials Today 15(1–2):36–49. doi:10.1016/S1369-7021(12)70019-6

    Article  Google Scholar 

  5. Hernandez-Sosa G, Bornemann N, Ringle I, Agari M, Dörsam E, Mechau N, Lemmer U (2013) Rheological and drying considerations for uniformly gravure-printed layers: towards large-area flexible organic light-emitting diodes. Adv Funct Mater 23(25):3164–3171. doi:10.1002/adfm.201202862

    Article  Google Scholar 

  6. Lee SH, Nguyen HAD, Kim J-M, Ko S-L, Lee S (2016) Improvement of the performance of printed organic thin film transistor by calendering process. Sci Adv Mater 8(2):363–368. doi:10.1166/sam.2016.2495

    Article  Google Scholar 

  7. Allen M, Lee C, Ahn B, Kololuoma T, Shin K, Ko S (2011) R2R gravure and inkjet printed RF resonant tag. Microelectron Eng 88(11):3293–3299. doi:10.1016/j.mee.2011.08.010

    Article  Google Scholar 

  8. Vilkman M, Apilo P, Välimäki M, Ylikunnari M, Bernardi A, Po R, Corso G, Hast J (2015) Gravure-printed ZnO in fully roll-to-roll printed inverted organic solar cells: optimization of adhesion and performance. Energy Technology 3(4):407–413. doi:10.1002/ente.201402155

    Article  Google Scholar 

  9. Sung D, de la Fuente VA, Subramanian V (2010) Scaling and optimization of gravure-printed silver nanoparticle lines for printed electronics. Components and Packaging Technologies, IEEE Transactions on 33(1):105–114. doi:10.1109/TCAPT.2009.2021464

    Article  Google Scholar 

  10. Park J, Shin K, Lee C (2015) Improvement of cross-machine directional thickness deviation for uniform pressure-sensitive adhesive layer in roll-to-roll slot-die coating process. Int J Precis Eng Manuf 16(5):937–943. doi:10.1007/s12541-015-0122-1

    Article  Google Scholar 

  11. Noh J, Yeom D, Lim C, Cha H, Han J, Kim J, Park Y, Vivek S, Cho G (2010) Scalability of roll-to-roll gravure-printed electrodes on plastic foils. Electronics Packaging Manufacturing, IEEE Transactions on 33(4):275–283. doi:10.1109/TEPM.2010.2057512

    Article  Google Scholar 

  12. Nguyen HAD, Lee C, Shin K-H, Lee D (2015) An investigation of the ink-transfer mechanism during the printing phase of high-resolution roll-to-roll gravure printing. Components, Packaging and Manufacturing Technology, IEEE Transactions on 5(10):1516–1524. doi:10.1109/TCPMT.2015.2473853

    Article  Google Scholar 

  13. Nguyen HAD, Shin K-H, Lee D (2014) Effect of process parameters on fidelity of printed line width in high resolution roll-to-roll gravure printing. Jpn J Appl Phys 53(5S3):05HC04

    Article  Google Scholar 

  14. Park J, Nguyen HAD, Park S, Lee J, Kim B, Lee D (2015) Roll-to-roll gravure printed silver patterns to guarantee printability and functionality for mass production. Curr Appl Phys 15(3):367–376. doi:10.1016/j.cap.2015.01.007

    Article  Google Scholar 

  15. Nguyen HAD, Lee J, Kim CH, Shin K-H, Lee D (2013) An approach for controlling printed line-width in high resolution roll-to-roll gravure printing. J Micromech Microeng 23(9):095010

    Article  Google Scholar 

  16. Shin K-H, Nguyen HAD, Park J, Shin D, Lee D (2016) Roll-to-roll gravure printing of thick-film silver electrode micropatterns for flexible printed circuit board. Journal of Coatings Technology and Research:1–12. doi:10.1007/s11998-016-9844-y

  17. Hrehorova E, Rebros M, Pekarovicova A, Bazuin B, Ranganathan A, Garner S, Merz G, Tosch J, Boudreau R (2011) Gravure printing of conductive inks on glass substrates for applications in printed electronics. J Disp Technol 7(6):318–324. doi:10.1109/JDT.2010.2065214

    Article  Google Scholar 

  18. Hayashi T, Mori T, Amari T (1993) Dynamics of transfer and splitting of emulsified ink. Journal of Printing Science and Technology 30(1):28–33. doi:10.11413/nig1987.30.28

    Google Scholar 

  19. Koidis C, Logothetidis S, Kassavetis S, Kapnopoulos C, Karagiannidis PG, Georgiou D, Laskarakis A (2013) Effect of process parameters on the morphology and nanostructure of roll-to-roll printed P3HT:PCBM thin films for organic photovoltaics. Sol Energy Mater Sol Cells 112:36–46. doi:10.1016/j.solmat.2012.12.044

    Article  Google Scholar 

  20. Nguyen H-A-D, Lee C, Shin K-H (2013) A mathematical model to predict surface roughness and pattern thickness in roll-to-roll gravure printed electronics. Robot Comput Integr Manuf 29(4):26–32. doi:10.1016/j.rcim.2012.10.003

    Article  Google Scholar 

  21. Nguyen HAD, Shin K, Lee C (2015) Effect of nip force on ink transfer in high resolution roll-to-roll printing. Int J Precis Eng Manuf 16(3):517–523. doi:10.1007/s12541-015-0070-9

    Article  Google Scholar 

  22. Montgomery DC (2013) Design and analysis of experiments. J. Wiley & Sons, New York [etc.]

    Google Scholar 

  23. Vera Candioti L, De Zan MM, Cámara MS, Goicoechea HC (2014) Experimental design and multiple response optimization. Using the desirability function in analytical methods development Talanta 124:123–138. doi:10.1016/j.talanta.2014.01.034

    Google Scholar 

  24. Nguyen HAD, Lee SH, Shin K-H, Lee S (2014) Optimization of calendering process using Taguchi method to improve the performance of printed capacitor. Jpn J Appl Phys 53(5S3):05HC06

    Article  Google Scholar 

  25. Liao H-C (2006) Multi-response optimization using weighted principal component. Int J Adv Manuf Technol 27(7–8):720–725. doi:10.1007/s00170-004-2248-7

    Article  Google Scholar 

  26. Chinnaiyan P, Jeevanantham AK (2014) Multi-objective optimization of single point incremental sheet forming of AA5052 using Taguchi based grey relational analysis coupled with principal component analysis. Int J Precis Eng Manuf 15(11):2309–2316. doi:10.1007/s12541-014-0595-3

    Article  Google Scholar 

  27. Fung C-P, Kang P-C (2005) Multi-response optimization in friction properties of PBT composites using Taguchi method and principle component analysis. J Mater Process Technol 170(3):602–610. doi:10.1016/j.jmatprotec.2005.06.040

    Article  Google Scholar 

  28. Cen J, Kitsomboonloha R, Subramanian V (2014) Cell filling in gravure printing for printed electronics. Langmuir 30(45):13716–13726. doi:10.1021/la503180a

    Article  Google Scholar 

  29. Kitsomboonloha R, Subramanian V (2014) Lubrication-related residue as a fundamental process scaling limit to gravure printed electronics. Langmuir 30(12):3612–3624. doi:10.1021/la404938z

    Article  Google Scholar 

  30. Hariprasad DS, Grau G, Schunk PR, Tjiptowidjojo K (2016) A computational model for doctoring fluid films in gravure printing. J Appl Phys 119(13):135303. doi:10.1063/1.4945030

    Article  Google Scholar 

  31. Gerd G, Jialiang C, Hongki K, Rungrot K, William JS, Vivek S (2016) Gravure-printed electronics: recent progress in tooling development, understanding of printing physics, and realization of printed devices. Flexible and Printed Electronics 1(2):023002

    Article  Google Scholar 

  32. Kitsomboonloha R, Morris SJS, Rong X, Subramanian V (2012) Femtoliter-scale patterning by high-speed, highly scaled inverse gravure printing. Langmuir 28(48):16711–16723. doi:10.1021/la3037132

    Article  Google Scholar 

  33. Karagiannis S, Stavropoulos P, Ziogas C, Kechagias J (2014) Prediction of surface roughness magnitude in computer numerical controlled end milling processes using neural networks, by considering a set of influence parameters: an aluminium alloy 5083 case study. Proc Inst Mech Eng B J Eng Manuf 228(2):233–244. doi:10.1177/0954405413498582

    Article  Google Scholar 

  34. Rao RS, Kumar CG, Prakasham RS, Hobbs PJ (2008) The Taguchi methodology as a statistical tool for biotechnological applications: a critical appraisal. Biotechnol J 3(4):510–523. doi:10.1002/biot.200700201

    Article  Google Scholar 

  35. Dasgupta K, Sen D, Mazumder S, Basak CB, Joshi JB, Banerjee S (2010) Optimization of parameters by Taguchi method for controlling purity of carbon nanotubes in chemical vapour deposition technique. J Nanosci Nanotechnol 10(6):4030–4037. doi:10.1166/jnn.2010.2002

    Article  Google Scholar 

  36. Jolliffe IT (2002) Principal component analysis. Springer. Available via http://worldcat.org. http://site.ebrary.com/id/10047693.

  37. Park JD, Lim S, Kim H (2015) Patterned silver nanowires using the gravure printing process for flexible applications. Thin Solid Films 586:70–75. doi:10.1016/j.tsf.2015.04.055

    Article  Google Scholar 

  38. Neff JE (2009) Investigation of the effects of process parameters on performance of gravure printed ITO on flexible substrates. Georgia Institute of Technology

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changwoo Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, H.A.D., Shin, K. & Lee, C. Multi-response optimization of R2R gravure printing using orthogonal array and principal component analysis as a weighting factor. Int J Adv Manuf Technol 90, 3595–3606 (2017). https://doi.org/10.1007/s00170-016-9685-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-9685-y

Keywords

Navigation