Skip to main content
Log in

Simulation of the forming process of conical cup shaped by laser-induced shock waves

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Laser shock forming (LSF) is a sheet plastic forming technology, which employs laser-induced shock waves to make sheet metal duplicate a desired shape of the mold. In this paper, a finite element analysis (FEA) model was developed to simulate dynamic forming process with the commercial finite element code ABAQUS/Explicit, and a series of dynamic deformation behaviors of the metal sheet shaped into conical cup at the end of different periods of time were displayed and discussed in detail. The springback of conical cup and the distribution of residual stress were analyzed with ABAQUS/Standard. All these investigations could provide insight into the physics process of the ultra-fast deformation. The LSF experiment was further conducted to verify the results predicted by FEA. The experiment results are well consistent with the numerical predicted data, which validates the FEA model. It indicates that FEA can be used to simulate the forming process and optimize its parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kowsarinia E, Alizadeh Y, Pour HSS (2013) Theoretical and experimental study on the effects of explosive forming parameters on plastic wrinkling of annular plates. Int J Adv Manuf Technol 67(1–4):877–885

    Article  Google Scholar 

  2. Jiang HW, Li N, Xu Z, Yan C, Wang DZ, Han XT (2015) Non-twinning deformation mechanism of pure copper under high speed electromagnetic forming. Mater Des 81:54–58

    Article  Google Scholar 

  3. Wang X, Du DZ, Zhang H, Shen ZB, Liu HX, Zhou ZJ, Liu H, Hu Y, Gu CX (2013) Investigation of microscale laser dynamic flexible forming process-simulation and experiments. Int J Mach Tools Manuf 67:8–17

    Article  Google Scholar 

  4. Yu CJ, Gao H, Yu HY, Jiang HQ, Cheng GJ (2009) Laser dynamic forming of functional materials laminated composites on patterned three-dimensional surfaces with applications on flexible microelectromechanical systems. Appl Phys Lett 95(9):091108

    Article  Google Scholar 

  5. Li J, Chung TF, Chen YP, Cheng GJ (2002) Nanoscale strainability of graphene by laser shock-induced three-dimensional shaping. Nano Lett 12(9):4577–4583

    Article  Google Scholar 

  6. O’Keefe JD, Skeen CH, York CM (1973) Laser-induced deformation modes in thin metal targets. J Appl Phys 44(10):4622–4626

    Article  Google Scholar 

  7. Zhou JZ, Yang JC, Zhang YK, Zhou M (2002) A study on super-speed forming of metal sheet by laser shock waves. J Mater Process Technol 129(1–3):241–244

    Article  Google Scholar 

  8. Niehoff HS, Vollertsen F (2005) Non-thermal laser stretch-forming. Adv Mater Res 6–8:433–440

    Article  Google Scholar 

  9. Cheng GJ, Pirzada D, Zhou M (2007) Microstructure and mechanical property characterizations of metal foil after microscale laser dynamic forming. J Appl Phys 101(6):063108

    Article  Google Scholar 

  10. Zheng C, Sun S, Ji Z, Wang W, Liu J (2010) Numerical simulation and experimentation of micro scale laser bulge forming. Int J Mach Tools Manuf 50(12):1048–1056

    Article  Google Scholar 

  11. Yang CJ, Ye Z, Lu JZ, Jiang YF (2011) Laser shock forming of SUS304 stainless steel sheet with elliptical spot. Int J Adv Manuf Technol 56(9–12):987–993

    Article  Google Scholar 

  12. Nagarajan B, Castagne S, Wang ZK (2013) Mold-free fabrication of 3D microfeatures using laser-induced shock pressure. Appl Surf Sci 268:529–534

    Article  Google Scholar 

  13. Zhang XQ, She JP, Li SZ, Duan SW, Zhou Y, Yu XL, Zheng R, Zhang B (2015) Simulation on deforming progress and stress evolution during laser shock forming with finite element method. J Mater Process Technol 220:27–35

    Article  Google Scholar 

  14. Zhang D, Lin YY, Gu CX, Shen ZB, Liu HX, Wang X (2015) A mold-free laser shock micro-drawing forming process using plasticine as the flexible support. Int J Adv Manuf Technol 79(1–4):265–272

    Article  Google Scholar 

  15. Gao H, Ye C, Cheng GJ (2009) Deformation behaviors and critical parameters in microscale laser dynamic forming. J Manuf Sci Eng Trans ASME 131(5):051011

    Article  Google Scholar 

  16. Liu HX, Shen ZB, Wang X, Wang HJ, Tao MK (2010) Micromould based laser shock embossing of thin metal sheets for MEMS applications. Appl Surf Sci 256(14):4687–4691

    Article  Google Scholar 

  17. Li J, Cheng GJ (2010) Multiple-pulse laser dynamic forming of metallic thin films for microscale three dimensional shapes. J Appl Phys 108(1):013107

    Article  Google Scholar 

  18. Jiang YF, Huang Y, Jin H, Gu YY, Ren AG, Huang LW, Qian XM (2013) Research on precision control of sheet metal forming by laser shock waves with semi-die. Opt Laser Technol 45(1):598–604

    Article  Google Scholar 

  19. ABAQUS 6.11 Documentation, Dassault Systèmes Simulia Corp., Providence, RI, USA, 2011

  20. Ding K, Ye L (2003) FEM simulation of two sided laser shock peening of thin sections of Ti-6Al-4V alloy. Surf Eng 19(2):127–133

    Article  Google Scholar 

  21. Zhang XQ, Chen LS, Li SZ, Duan SW, Zhou Y, Huang ZL, Zhang Y (2015) Investigation of the fatigue life of pre- and post-drilling hole in dog-bone specimen subjected to laser shot peening. Mater Des 88:106–114

    Article  Google Scholar 

  22. Correa C, Gil-Santos A, Porro JA, Díaz M, Ocãna JL (2015) Eigenstrain simulation of residual stresses induced by laser shock processing in a Ti6Al4V hip replacement. Mater Des 79:106–114

    Article  Google Scholar 

  23. Fabbro R, Fournier J, Ballard P, Devaux D, Virmont J (1990) Physical study of laser-produced plasma in confined geometry. J Appl Phys 68(2):775–784

    Article  Google Scholar 

  24. Zhou M, Zhang YK, Cai L (2003) Ultrahigh-strain-rate plastic deformation of a stainless-steel sheet with TiN coatings driven by laser shock waves. Appl Phys A Mater Sci Process 77(3–4):549–554

    Article  Google Scholar 

  25. Johnson GR, Cook WH (1983) A constitutive model and data for metals subjected to large strains, high rates and high temperatures. In: Proceedings of the 7th international symposium on ballistics 547:541–547

  26. Fan Y, Wang Y, Vukelic S, Yao YL (2005) Wave-solid interactions in laser-shocked-induced deformation processes. J Appl Phys 98(10):104904

    Article  Google Scholar 

  27. Wang YN, Fan YJ, Vukelic S, Yao YL (2007) Energy-level effects on the deformation mechanism in microscale laser peen forming. J Manuf Process 9(1):1–12

    Article  Google Scholar 

  28. Fang YW, Li YH, He WF, Lu YJ, Li PY (2013) Numerical simulation of residual stresses fields of DD6 blade during laser shock processing. Mater Des 43:170–176

    Article  Google Scholar 

  29. Sagisaka Y, Kamiya M, Matsuda M, Ohta Y (2010) Thin-sheet-metal bending by laser peen forming with femtosecond laser. J Mater Process Technol 210(15):2304–2309

    Article  Google Scholar 

  30. Risch D, Beerwald C, Brosius A, Kleiner M (2004) On the significance of the die design for the electromagnetic sheet metal forming. Proc. of the ICHSF 2004-1st International conference on High speed forming, Dortmund, pp.191–200

  31. Ma XQ (1992) Shock dynamics. Beijing Institute of Technology Press

  32. Aryaei A, Hashemnia K, Jafarpur K (2010) Experimental and numerical study of ball size effect on restitution coefficient in low velocity impacts. Int J Impact Eng 37(10):1037–1044

    Article  Google Scholar 

  33. Vollertsen F (2013) Micro metal forming. Springer, Berlin Heidelberg

    Book  Google Scholar 

  34. Wang R, Xiong ZH, Huang WB (1998) Fundament of plastic mechanics. Science Press, Beijing

    Google Scholar 

  35. Hu YQ, Zhao YP (2001) Scale effect of plastic strain rate. Chin J Aeronaut 14(1):37–43

    Google Scholar 

  36. Wagoner RH, Lim H, Lee MG (2013) Advanced issues in springback. Int J Plast 45:3–20

    Article  Google Scholar 

  37. Parsa MH, Mohammadi SV, Aghchai AJ (2014) Al3105/polypropylene/Al3105 laminates springback in V-die bending. Int J Adv Manuf Technol 75(5–8):849–860

    Article  Google Scholar 

  38. Papeleux L, Ponthot JP (2002) Finite element simulation of springback in sheet metal forming. J Mater Process Technol 125-126:785–791

    Article  Google Scholar 

  39. Lee SW, Yang DY (1998) An assessment of numerical parameters influencing springback in explicit finite element analysis of sheet metal forming process. J Mater Process Technol 80-81:60–67

    Article  Google Scholar 

  40. Zein H, Sherbiny ME, Abd-Rabou M, Shazly ME (2014) Thinning and spring back prediction of sheet metal in the deep drawing process. Mater Des 53:797–808

    Article  Google Scholar 

  41. Shahabad SI, Naeini HM, Roohi AH, Soltanpour M, Tavakoli A (2016) Height prediction of dome-shaped products in laser forming process. Int J Adv Manuf Technol pp 1–10

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingquan Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Zhang, Y., Yin, Y. et al. Simulation of the forming process of conical cup shaped by laser-induced shock waves. Int J Adv Manuf Technol 91, 1619–1630 (2017). https://doi.org/10.1007/s00170-016-9633-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-9633-x

Keywords

Navigation