Skip to main content
Log in

Joule heating of the forming zone in incremental sheet metal forming: Part 2

Creating an experimental setup and forming of Ti6Al4V

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Incremental sheet metal forming at elevated temperatures takes the approach to positively influence the forming properties of the processed material. Among others, the influenced key attributes of the final part are geometric accuracy, the usable material, and the residual stresses after forming. In the first part of this paper, a state of the art analysis of used heating methods and a thermal process model for Joule heating have already been presented. This second part describes the development of an experimental setup and shows results of forming of Ti6Al4V sheets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AISF –:

Asymmetric incremental sheet forming

DC –:

Direct current

DPIF –:

Duplex incremental forming

DPIF-L –:

Duplex incremental forming with local support

DPIF-P –:

Duplex incremental forming with peripheral support

fts –:

Force-torque-sensor

HSS –:

High speed steel

IFOV –:

Instantaneous field of view

ISF –:

Incremental sheet forming

KRL –:

KUKA robot language

KXF –:

A special grade of tungsten carbide

PLC –:

Programmable logic controller

RPS –:

Reference point system

RSI –:

Robot sensor interface

SPIF –:

Single point incremental forming

TCP –:

Tool-center-point

USB –:

Universal serial bus

μ C –:

Microcontroller

\(A_{\mathrm {5d}}~[\mathrm {\frac {N}{mm^{2}}}]\) :

Elongation at rupture (specimen’s length was five times as long as the initial diameter)

\(c_{p}~[\frac {\mathrm {J}}{\text {kg}\cdot \mathrm {K}}]\) :

Specific heat capacity

\(E~[\frac {\mathrm {N}}{\text {mm}^{2}}]\) :

Young’s modulus

F [N]:

Force

F res [N]:

Resultant of force vector

\(g~[\frac {\mathrm {m}}{\mathrm {s}^{2}}]\) :

Gravitational acceleration

\(\bar {I}~[\mathrm {A}]\) :

Mean value of electric current

\(k~[\frac {\text {mm}^{3}{\mathrm {N}\cdot \mathrm {m}}}]\) :

Wear coefficient

l [m]:

length

L B K [−]:

Material-specific light weight factor

L B K z [−]:

Material-specific light weight factor (tension)

r (mm):

Radius

\(R_{\mathrm {m}}~[\frac {\mathrm {N}}{\text {mm}^{2}}]\) :

Ultimate tensile strength

\(R_{\mathrm {p0.2}}~[\frac {\mathrm {N}}{\text {mm}^{2}}]\) :

0.2 % offset yield strength

s [m]:

Sliding distance

t [s]:

Time

t B0 [mm]:

Initial sheet thickness

\(v~[\frac {\mathrm {m}}{\mathrm {s}}]\) :

Tool speed

W v [mm3]:

Volumetric wear rate

z t [mm]:

Step size in z direction

α [°]:

Wall angle

\(\alpha _{A}~[\frac {1}{\mathrm {K}}]\) :

Coefficient of linear expansion

𝜖 [−]:

Emissivity

𝜗 [°C]:

Temperature

𝜗 fz [°C]:

Temperature of the forming zone

𝜗 S [°C]:

Melting point

𝜗 U [°C]:

Temperature of the surrounding atmosphere

𝜗 1 [°C]:

Start temperature

\(\lambda ~[\frac {\mathrm {W}}{\mathrm {m}\cdot \mathrm {K}}]\) :

Thermal conductivity

ρ [Ω ⋅ m]:

Resistivity

\(\rho _{s}~[\frac {\text {kg}}{\mathrm {m}^{3}}]\) :

Density of the sheet material

References

  1. Ambrogio G, Filice L, Manco GL (2008) Warm incremental forming of magnesium alloy AZ31. CIRP Ann Manuf Technol 57:257–260

    Article  Google Scholar 

  2. Ambrogio G, Gagliardi F, Filice L, Aghinelli O (2012) Towards energy efficiency in incremental forming of titanium. Key Eng Mater 504-506:821–826

    Article  Google Scholar 

  3. Buff B (2013) Matrizenlose Fertigung geometrisch komplexer Blechbauteile mittels roboterbasierter inkrementeller Blechumformung. Ph.D. Thesis, Ruhr-Universität Bochum

  4. Callebaut B (2009) Sheet metal forming by laser forming and laser assisted incremental forming. Ph.D. Thesis, Katholieke Universiteit Leuven Belgium

  5. Degischer HP, Prinzipien L (2009) Werkstoffauswahl und Fertigungsvarianten, electronic ressource. WILEY-VCH, Weinheim

    Google Scholar 

  6. Doege E, Behrens BA (2010) Handbuch Umformtechnik, 2nd edn. Springer

  7. Duflou JR, Callebaut B, Verbert J, Baerdemaeker H (2007) Laser assisted incremental forming: formability and accuracy improvement. CIRP Ann Manuf Technol 56/1:273–276

    Article  Google Scholar 

  8. Fan G, Sun F, Meng X, Gao L, Tong G (2010) Electric hot incremental forming of Ti-6Al-4V titanium sheet. Int J Adv Manuf Technol 49(9):941–947

    Article  Google Scholar 

  9. Friedrich HE, Mordike BL (2006) Magnesium technology: Metallurgy, design data, applications. Springer, Berlin and New York

    Google Scholar 

  10. Göttmann A, Bailly D, Bergweiler G, Bambach M, Stollenwerk J, Hirt G, Loosen P (2013) A novel approach for temperature control in ISF supported by laser and resistance heating. Int J Adv Manuf Technol 67:2195–2205

    Article  Google Scholar 

  11. Göttmann A, Diettrich J, Bergweiler G, Bambach M, Hirt G, Loosen P, Poprawe R (2011) Laser-assisted asymmetric incremental sheet forming of titanium sheet metal parts. Prod Eng Res Dev (Online) 5 (3):263–271

    Article  Google Scholar 

  12. Husmann T, Magnus CS (2016) Thermography in incremental forming processes at elevated temperatures. Measurement 77:16–28

    Article  Google Scholar 

  13. Ji YH, Park JJ (2008) Incremental forming of free surface with magnesium alloy AZ31 sheet at warm temperatures. Trans Nonferrous Metals Soc China 18:165–169

    Article  Google Scholar 

  14. Klein B (2013) Leichtbau-konstruktion: Berechnungsgrundlagen und Gestaltung, 10th edn. Springer Vieweg, Wiesbaden

    Book  Google Scholar 

  15. Kreimeier D, Buff B, Magnus C, Smukala V, Zhu J (2011) Robot-based incremental sheet metal forming increasing the geometrical accuracy of complex parts. Key Eng Mater 473:853–860

    Article  Google Scholar 

  16. Lütjering G, Williams JC (2007) Titanium, 2nd edn. Engineering materials and Processes. Springer, Berlin and New York

    Google Scholar 

  17. Magnus CS (2015) Lokale joulesche Erwärmung der Umformzone in der roboterbasierten inkrementellen Blechumformung. Ph.D. Thesis, Ruhr-Universität Bochum

  18. Maidagan E, Zettler J, Bambach M, Rodriguez PP, Hirt G (2007) A new incremental sheet forming process based on a flexible supporting die system. Key Eng Mater 344:607–614

    Article  Google Scholar 

  19. Malhotra R, Cao J, Beltran M, Xu D, Magargee J, Kiridena V, Xia ZC (2012) Accumulative-DSIF strategy for enhancing process capabilities in incremental forming. CIRP Ann Manuf Technol 61:251–254

    Article  Google Scholar 

  20. (2012) McKinsey&Company: Autoindustrie: CO2-Regulierung sorgt bis 2030 für dreistelliges Milliardenwachstum im Leichtbau

  21. Meier H, Magnus C, Buff B, Zhu J (2013) Tool concepts and materials for incremental sheet metal forming with direct resistance heating. Key Eng Mater 549:61–67

    Article  Google Scholar 

  22. Meier H, Smukala V, Dewald O, Zhang J (2007) Two point incremental forming with two moving forming tools. Key Eng Mater 344:599–605

    Article  Google Scholar 

  23. Meier H, Zhu J, Buff B, Laurischkat R (2012) CAX process chain for two robots based incremental sheet metal forming. Procedia CIRP 3:37–42

    Article  Google Scholar 

  24. Optris GmbH: Wärmebildkameras (2014). www.optris.de/infrarotkamera-pi160?file=tl_files/pdf/Downloads/Infrarotkamera/Broschuere%20optris%20PI.pdf

  25. Ostermann F (2007) Anwendungstechnologie Aluminium, 2nd edn. Springer, Berlin and Heidelberg

    Google Scholar 

  26. Paniti I (2010) CAD API Based tool path control for novel incremental sheet forming. Pollack Periodica. Int J Eng Inf Sci 5(2):81–90

    Google Scholar 

  27. Paniti I, Kovács GL, Haidegger G, Nasca J (2007) Tooling for novel ISF-incremental sheet forming. ICT-2007, Proceedings of the international conference on tools, Miskolc, 269–274

  28. Peters M, Leyens C (eds) (2002) Titan und Titanlegierungen, 3rd edn. WILEY-VCH, Weinheim

  29. Rossini NS, Dassisti M, Benyounis KY, Olabi AG (2012) Methods of measuring residual stresses in components. Mater Des 35:572–588

    Article  Google Scholar 

  30. Rossow CC (2014) Handbuch der Luftfahrzeugtechnik. Hanser, München

    Book  Google Scholar 

  31. Roth J, Cao J (2007) Electrical-assisted double side incremental forming and processes thereof: Patent

  32. Smukala V (2012) Systematische Untersuchung der Druckspannungsüberlagerung in der roboterbasierten inkrementellen Blechumformung. Ph.D. Thesis, Ruhr-Universität Bochum

  33. ThyssenKrupp Materials Schweiz: Titan grade 5 (2014). www.thyssenkrupp.ch/documents/Titan_Grade_5.pdf

  34. ThyssenKrupp Steel Europe AG: Complexphasen-Stähle CP-W und CP-K (2013). www.thyssenkrupp-steel-europe.com/tiny/qE0/download.pdf

  35. ThyssenKrupp Steel Europe AG: Martensitphasen-Stahl MS-W: Für crashrelevante und verschleißbeanspruchte Bauteile (2013). www.thyssenkrupp-steel-europe.com/tiny/MjB/download.pdf

  36. ThyssenKrupp Steel Europe AG: Mangan-Bor-Stähle MBW: Für die Warmumformung (2014). https://www.thyssenkrupp-steel-europe.com/media/content_1/publikationen/produktinformation_mbw_1114_de.pdf

  37. Tisza M, Paniti I, Kovacs PZ (2010) Experimental and numerical study of a milling machine-based dieless incremental sheet forming. Int J Mater Form 3:971–974

    Article  Google Scholar 

  38. Tschätsch H, Dietrich J (2008) Praxis der Zerspantechnik: Verfahren, Werkzeuge, Berechnung, 9th edn. Studium. Vieweg and Teubner, Wiesbaden

    Google Scholar 

  39. Wehmöller M (1998) Rechnergestützte Analyse von computertomographischen Bilddaten, Konstruktion und Fertigung von individuellen Implantaten. Ph.D. Thesis, Ruhr-Universität Bochum

  40. Zhang Q, Guo H, Xiao F, Gao L, Bondarev AB, Han W (2009) Influence of anisotropy of the magnesium alloy AZ31 sheets on warm negative incremental forming. J Mater Process Technol 209(15/16):5514–5520

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian S. Magnus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magnus, C.S. Joule heating of the forming zone in incremental sheet metal forming: Part 2. Int J Adv Manuf Technol 89, 295–309 (2017). https://doi.org/10.1007/s00170-016-9008-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-9008-3

Keywords

Navigation