Skip to main content
Log in

Optimizing the geometric parameters of cutting edge for finishing machining of Fe-Cr-Ni stainless steel

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In order to optimize the geometric parameters of cutting edge for finishing machining of Fe-Cr-Ni stainless steel, a 2D finite element (FE) model of orthogonal cutting has been built with FE software AdvantEdge. The optimized methodology of cutting edge geometric parameters has been proposed based on simulated results. Then, the geometric parameters of cutting edge have been optimized based on a comprehensive criterion combining chip deformation coefficient and tool stress, where chip deformation coefficient indirectly determines the surface roughness and tool stress determines tool wear, which affect the dimensional precision of parts. The scope of rake angle is from 10° to 20°, and the scope of cutting edge radius is from 5 to 15 μm in the optimization process. The optimal rake angle for finishing machining Fe-Cr-Ni stainless steel is 16°, and the optimal cutting edge radius is 7 μm with a given relief angle of 7°.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chagas GMP, Barbosa PA, Barbosa CA, Machado IF (2013) Thermal analysis of the chip formation in austenitic stainless steel. Procedia CIRP 8:293–298

    Article  Google Scholar 

  2. Albu S, Bolo V (2014) Determining the optimal position of the frontal-cylindrical milling tool in finishing in the new technology for processing worms. Procedia Technol 12:455–461

    Article  Google Scholar 

  3. Kalyan C, Samuel GL (2015) Cutting mode analysis in high speed finish turning of AlMgSi alloy using edge chamfered PCD tools. J Mater Process Technol 216:146–159

    Article  Google Scholar 

  4. Cantero JL, Díaz-álvarez J, Miguélez MH, Marín NC (2013) Analysis of tool wear patterns in finishing turning of Inconel 718. Wear 297:885–894

    Article  Google Scholar 

  5. Atlati S, Haddag B, Nouari M, Zenasni M (2014) Thermomechanical modelling of the tool-work material interface in machining and its implementation using the ABAQUS VUINTER subroutine. Int J Mech Sci 87:102–117

    Article  Google Scholar 

  6. Ben Moussa N, Sidhom H, Braham C (2012) Numerical and experimental analysis of residual stress and plastic strain distributions in machined stainless steel. Int J Mech Sci 64:82–93

    Article  Google Scholar 

  7. Bharilya RK, Malgaya R, Patidar L, Gurjar RK, Jha AK (2015) Study of optimised process parameters in turning operation through force dynamometer on CNC machine. Mater Today: Proc 2:2300–2305

    Article  Google Scholar 

  8. Krol TA, Seidel C, Zaeh MF (2013) Prioritization of process parameters for an efficient optimisation of additive manufacturing by means of a finite element method. Procedia CIRP 12:169–174

    Article  Google Scholar 

  9. Cheng X, Zha X, Jiang F (2015) Optimizing the geometric parameters of cutting edge for rough machining Fe-Cr-Ni stainless steel. Int J Adv Manuf Technol. doi:10.1007/s00170-015-7892-6

    Google Scholar 

  10. Rech J, Yen YC, Schaff MJ, Hamdi H, Altan T, Bouzakis KD (2005) Influence of cutting edge radius on the wear resistance of PM-HSS milling inserts. Wear 259:1168–1176

    Article  Google Scholar 

  11. Hosseinkhani K, Ng E (2015) A combined empirical and numerical approach for tool wear prediction in machining. Procedia CIRP 31:304–309

    Article  Google Scholar 

  12. Bratu V, Kosel F, Kova M (2010) Determination of optimal cutting edge geometry on a stamped orthotropic circular electrical steel sheet. J Mater Process Tech 210:396–407

    Article  Google Scholar 

  13. Hua J, Umbrello D, Shivpuri R (2006) Investigation of cutting conditions and cutting edge preparations for enhanced compressive subsurface residual stress in the hard turning of bearing steel. J Mater Process Tech 171:180–187

    Article  Google Scholar 

  14. Zel T (2003) Modeling of hard part machining: effect of insert edge preparation in CBN cutting tools. J Mater Process Tech 141:284–293

    Article  Google Scholar 

  15. Su G, Liu Z, Li L, Wang B (2015) Influences of chip serration on micro-topography of machined surface in high-speed cutting. Int J Mach Tools Manuf 89:202–207

    Article  Google Scholar 

  16. Schultheiss F, H Gglund SR, Bushlya V, Zhou J, St Hl J (2014) Influence of the minimum chip thickness on the obtained surface roughness during turning operations. Procedia CIRP 13:67–71

    Article  Google Scholar 

  17. Korkut I, Kasap M, Ciftci I, Seker U (2004) Determination of optimum cutting parameters during machining of AISI 304 austenitic stainless steel. Mater Des 25:303–305

    Article  Google Scholar 

  18. Das SR, Dhupal D, Kumar A (2015) Experimental investigation into machinability of hardened AISI 4140 steel using TiN coated ceramic tool. Measurement 62:108–126

    Article  Google Scholar 

  19. Taureza M, Song X, Castagne S (2014) Depth-dependent stress–strain relation for friction prediction. Int J Mech Sci 86:46–53

    Article  Google Scholar 

  20. Jiang F, Yan L, Rong Y (2013) Orthogonal cutting of hardened AISI D2 steel with TiAlN-coated inserts simulations and experiments. Int J Adv Manuf Technol 64:1555–1563

    Article  Google Scholar 

  21. Jiang F, Zhang T, Yan L (2016) Estimation of temperature dependent heat transfer coefficients in near-dry cutting. Int J Adv Manuf Technol. doi:10.1007/s00170-015-8293-6

    Google Scholar 

  22. Hu W, Lin Y, Yuan S, He Z (2015) Constitutive models for regression of various experimental stress–strain relations. Int J Mech Sci 101–102:1–9

    Article  Google Scholar 

  23. Malakizadi A, Cedergren S, Sadik I, Nyborg L (2016) Inverse identification of flow stress in metal cutting process using response surface methodology. Simul Model Pract TH 60:40–53

    Article  Google Scholar 

  24. Buchkremer S, Wu B, Lung D, Münstermann S, Klocke F, Bleck W (2014) FE-simulation of machining processes with a new material model. J Mater Process Tech 214:599–611

    Article  Google Scholar 

  25. Jiang F, Li J, Sun J, Zhang S, Wang Z, Yan L (2010) Al7050-T7451 turning simulation based on the modified power-law material model. Int J Adv Manuf Technol 48:881

    Article  Google Scholar 

  26. Yu J, Jiang F, Rong Y, Xie H, Suo T (2014) Numerical study the flow stress in the machining process. Int J Adv Manuf Technol 74:509–517

    Article  Google Scholar 

  27. Altintas Y (2012) Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design. Am Libr Assoc Choice 50:116

    Google Scholar 

  28. Trent EM, Wright PK (eds) (2000) Metal cutting (Fourth edition). ed., Butterworth-Heinemann Ltd; 4th Revised edition

  29. GB/T2076-2007 (ISO6987/1-1993) (2007) The carbide indexable inserts design standards. China National Standardization Management Committee

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, T., Jiang, F., Yan, L. et al. Optimizing the geometric parameters of cutting edge for finishing machining of Fe-Cr-Ni stainless steel. Int J Adv Manuf Technol 88, 2061–2073 (2017). https://doi.org/10.1007/s00170-016-8895-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-8895-7

Keywords

Navigation