Skip to main content
Log in

A review of the current state of abrasive water-jet turning machining method

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Abrasive water-jet turning (AWJT) is one of these alternative methods and has gained an important status among others in a very short period of time. AWJT becomes prominent with its flexibility in cutting materials with almost any properties, with the elimination of thermal effects during the process, and with minimal stresses it imposes. It is widely preferred when heat-affected zones are to be avoided as it is a cold process. AWJT, on the other hand, is the replacement of a traditional cutter head of a turning testing apparatus with the AWJ in order to remove material turning the workpiece using a spindle testing apparatus while moving the nozzle on an axis with a specific distance from the workpiece. It is convenient to machine planar workpieces using the AWJ while it is harder to machine (turn) workpieces. However, there are scientific studies on the machinability of the planar workpieces, studies on the machinability of cylindrical materials are rarely found in the literature. Among the machining parameters for AWJT are nozzle feed rate, spindle speed, abrasive flow rate, pump pressure, abrasive size, and standoff distance. The studies available in the literature focus on the impact on Ra (μm), machining depth (mm), and material removal rate (mm3 min−1) as experiment outcomes. In this study, reviews of the research are available in the literature on the turning of workpieces using abrasive water jet. This study will also discuss the recommendations for the future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Azmir MA, Ahsan AK (2008) Investigation on glass/epoxy composite surfaces machined by abrasive water jet machining. J Mater Process Technol 198(1):122–128

    Article  Google Scholar 

  2. Choi GS, Choi GH (1997) Process analysis and monitoring in abrasive water jet machining of alumina ceramics. Int J Mach Tools Manuf 37(3):295–307

    Article  Google Scholar 

  3. Fowler G, Pashby IR, Shipway PH (2009) The effect of particle hardness and shape when abrasive water jet milling titanium alloy Ti6Al4V. Wear 266(7):613–620

    Article  Google Scholar 

  4. Hlaváč LM, Hlaváčová IM, Gembalová L, Kaličinský J, Fabian S, Měšťánek J, Mádr V (2009) Experimental method for the investigation of the abrasive water jet cutting quality. J Mater Process Technol 209(20):6190–6195

    Article  Google Scholar 

  5. Liu H, Wang J, Kelson N, Brown RJ (2004) A study of abrasive waterjet characteristics by CFD simulation. J Mater Process Technol 153:488–493

    Article  Google Scholar 

  6. Ma C, Deam RT (2006) A correlation for predicting the kerf profile from abrasive water jet cutting. Exp Thermal Fluid Sci 30(4):337–343

    Article  Google Scholar 

  7. Momber AW, Kovacevic R (2012) Principles of abrasive water jet machining. Springer Science & Business Media, USA

    MATH  Google Scholar 

  8. Paul S, Hoogstrate AM, Van Luttervelt CA, Kals HJJ (1998) Analytical and experimental modelling of the abrasive water jet cutting of ductile materials. J Mater Process Technol 73(1):189–199

    Article  Google Scholar 

  9. Ramulu M, Arola D (1993) Water jet and abrasive water jet cutting of unidirectional graphite/epoxy composite. Composites 24(4):299–308

    Article  Google Scholar 

  10. Vikram G, Babu NR (2002) Modelling and analysis of abrasive water jet cut surface topography. Int J Mach Tools Manuf 42(12):1345–1354

    Article  Google Scholar 

  11. Wang J (1999) Abrasive waterjet machining of polymer matrix composites—cutting performance, erosive process and predictive models. Int J Adv Manuf Technol 15(10):757–768

    Article  Google Scholar 

  12. Chen FL, Siores E (2001) The effect of cutting jet variation on striation formation in abrasive water jet cutting. Int J Mach Tools Manuf 41(10):1479–1486

    Article  Google Scholar 

  13. Hashish M (1984) A modeling study of metal cutting with abrasive waterjets. J Eng Mater Technol 106(1):88–100

    Article  Google Scholar 

  14. Hashish M (1988) Visualization of the abrasive-waterjet cutting process. Exp Mech 28(2):159–169

    Article  Google Scholar 

  15. Hashish M (1989) A model for abrasive-waterjet (AWJ) machining. J Eng Mater Technol 111(2):154–162

    Article  Google Scholar 

  16. Hashish M (1989) Pressure effects in abrasive-waterjet (AWJ) machining. J Eng Mater Technol 111(3):221–228

    Article  MathSciNet  Google Scholar 

  17. Hashish M (1991) Characteristics of surfaces machined with abrasive-waterjets. J Eng Mater Technol 113(3):354–362

    Article  Google Scholar 

  18. Hashish M (1991) Optimization factors in abrasive-waterjet machining. J Eng İnd 113(1):29–37

    Google Scholar 

  19. Kovacevic R, Hashish M, Mohan R, Ramulu M, Kim TJ, Geskin ES (1997) State of the art of research and development in abrasive waterjet machining. J Manuf Sci Eng 119(4B):776–785

    Article  Google Scholar 

  20. Kunaporn S, Ramulu M, Hashish M (2005) Mathematical modeling of ultra-high-pressure waterjet peening. J Eng Mater Technol 127(2):186–191

    Article  Google Scholar 

  21. Hashish M (1995) Effect of abrasive waterjet parameters on volume removal trends in turning. J Eng İnd 117:475

    Google Scholar 

  22. M Hashish, (2001) Macro characteristics of AWJ turned surfaces. WJTA American Waterjet Conf Minnesota Paper no4, pp1–14

  23. Zhong ZW, Han ZZ (2002) Turning of glass with abrasive waterjet. Mater Manuf Process 17(3):339–349

    Article  Google Scholar 

  24. Andersson GH U, Öjmertz KMC(2003) Abrasive waterjet used as a tool for producing materials test specimens, In: WJTA American Waterjet Conference

  25. Uhlmann E, Flögel K, Kretzschmar M, Faltin F (2012) Abrasive waterjet turning of high performance materials. Procedia CİRP 1:409–413

    Article  Google Scholar 

  26. Axinte DA, Stepanian JP, Kong MC, McGourlay J (2009) Abrasive waterjet turning—an efficient method to profile and dress grinding wheels. Int J Mach Tools Manuf 49(3):351–356

    Article  Google Scholar 

  27. Manu R, Babu NR (2009) An erosion-based model for abrasive waterjet turning of ductile materials. Wear 266(11):1091–1097

    Article  Google Scholar 

  28. Zohourkari, I, & Zohoor, M (2010) Mathematical modeling of abrasive waterjet turning of ductile materials. In ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis. American Society of Mechanical Engineers. pp 825–830

  29. Kartal, F, and Gökkaya, H (2012) Aşındırıcı Su Jeti ile Tornalama Deney Düzeneği Tasarımı. In International Iron & Steel Symposium Karabük, Türkiye.

  30. Kartal, F, Gökkaya, H, & Nalbant, M (2012) Turning of (Cu-Cr-Zr) alloy with abrasive water jet. In 21st International Conference on Water Jetting Ottawa, Canada

  31. Kartal F, Çetin MH, Gökkaya H, Yerlikaya Z (2014) Optimization of abrasive water jet turning parameters for machining of low density polyethylene material based on experimental design method. Int Polym Process 29(4):535–544

    Article  Google Scholar 

  32. Kartal F, Gökkaya H (2014) AISI 1040 Çeliğinin Aşındırıcı Su Jeti İle tornalama İşleminde İşleme Paremetrelerinin Talaş Kaldırma Hacmine ve Kesme Derinliğine Etkisi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 20(1):20–24

    Google Scholar 

  33. Hloch S, Hlaváček J, Vasilko K, Cárach J, Samardžić I, Kozak D, Klichová D (2014) Abrasive waterjet (AWJ) titanium tangential turning evaluation. Metalurgija 53(4):537–540

    Google Scholar 

  34. Li, W Y, Wang, J, & Ali, Y M (2012) An experimental study of radial-mode abrasive waterjet turning of steels. In Materials Science Forum 697. pp 166–170.

  35. Zohourkari I, Zohoor M, Annoni M (2014) Investigation of the effects of machining parameters on material removal rate in abrasive waterjet turning. Adv Mech Eng 6:624–203

    Article  Google Scholar 

  36. Kartal F, Gökkaya H (2015) Effect of abrasive water jet turning process parameters on surface roughness and material removal rate of AISI 1050 steel. Mater Test 57(9):773–782

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuat Kartal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kartal, F. A review of the current state of abrasive water-jet turning machining method. Int J Adv Manuf Technol 88, 495–505 (2017). https://doi.org/10.1007/s00170-016-8777-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-8777-z

Keywords

Navigation