Skip to main content
Log in

Influence of metallic matrix on the densification behavior of zirconium diboride copper nickel composite processed by laser sintering

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The production of EDM electrodes by conventional machining processes can account for over 50 % of the total EDM process costs. The emerging Additive Manufacturing (AM) technologies provide the possibility of direct fabrication of electrical discharge machining (EDM) electrodes. Laser sintering (LS) is an alternative AM technique because it has the possibility to reduce the tool-room lead time and total EDM costs. The main difficulty of manufacturing an EDM electrode using LS is the selection of an appropriate material. This work investigated the direct production of EDM electrodes by means of the LS using a newly developed non-conventional metal-matrix composite material composed of a metallic matrix (CuNi) and an advanced ceramic (ZrB2). The influence of nickel content on the metallic matrix and the matrix content on the densification behavior and porosity of the electrodes processed by LS was investigated. It was found that the ZrB2–CuNi electrodes could be successfully manufactured by LS. It was verified that the addition of nickel in the metallic matrix improved the densification behavior of the samples. Higher levels of nickel content on the matrix resulted in loss of shape and distortion of the part. Influence of matrix content was also assessed, and it was observed that both samples processed with higher and lower amount of matrix presented some degree of curling from the building platform. The densification process and porosity of both samples processed with higher and lower matrix content did not improve the overall porosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ho KH, Newman ST (2003) State of the art electrical discharge machining (EDM). Int J Mach Tools Manuf 43:1287–1300. doi:10.1016/S0890-6955(03)00162-7

    Article  Google Scholar 

  2. Liu K, Lauwers B, Reynaerts D (2009) Process capabilities of micro-EDM and its applications. Int J Adv Manuf Technol 47:11–19. doi:10.1007/s00170-009-2056-1

    Article  Google Scholar 

  3. Rajurkar KP, Sundaram MM, Malshe AP (2013) Review of electrochemical and electrodischarge machining. Procedia CIRP 6:13–26. doi:10.1016/j.procir.2013.03.002

    Article  Google Scholar 

  4. Li L, Wong YS, Fuh JYH, Lu L (2001) Effect of TiC in copper-tungsten electrodes on EDM performance. J Mater Process Technol 113:563–567. doi:10.1016/S0924-0136(01)00622-7

    Article  Google Scholar 

  5. Ozgedik A, Cogun C (2006) An experimental investigation of tool wear in electric discharge machining. Int J Adv Manuf Technol 27:488–500. doi:10.1007/s00170-004-2220-6

    Article  Google Scholar 

  6. Arthur A, Dickens PM, Cobb RC (1996) Using rapid prototyping to produce electrical discharge machining electrodes. Rapid Prototyp J 2:4–12. doi:10.1108/13552549610109036

    Article  Google Scholar 

  7. Tang Y, Fuh JYH, Lu L et al (2002) Formation of electrical discharge machining electrode via laser cladding. Rapid Prototyp J 8:315–319. doi:10.1108/13552540210451787

    Article  Google Scholar 

  8. Kruth JP, Wang X, Laoui T, Froyen L (2003) Lasers and materials in selective laser sintering. Assem Autom 23:357–371. doi:10.1108/01445150310698652

    Article  Google Scholar 

  9. Dürr H, Pilz R, Eleser NS (1999) Rapid tooling of EDM electrodes by means of selective laser sintering. Comput Ind 39:35–45. doi:10.1016/S0166-3615(98)00123-7

    Article  Google Scholar 

  10. Tay FEH, Haider EA (2001) The potential of plating techniques in the development of rapid EDM tooling. Int J Adv Manuf Technol 18:892–896. doi:10.1007/PL00003957

    Article  Google Scholar 

  11. Dimla DE, Hopkinson N, Rothe H (2004) Investigation of complex rapid EDM electrodes for rapid tooling applications. Int J Adv Manuf Technol 23:249–255. doi:10.1007/s00170-003-1709-8

    Article  Google Scholar 

  12. Zhao J, Li Y, Zhang J et al (2003) Analysis of the wear characteristics of an EDM electrode made by selective laser sintering. J Mater Process Technol 138:475–478. doi:10.1016/S0924-0136(03)00122-5

    Article  Google Scholar 

  13. Kumar S, Kruth J-P (2010) Composites by rapid prototyping technology. Mater Des 31:850–856. doi:10.1016/j.matdes.2009.07.045

    Article  Google Scholar 

  14. Amorim FL, Lohrengel A, Schaefer G, Czelusniak T (2013) A study on the SLS manufacturing and experimenting of TiB2-CuNi EDM electrodes. Rapid Prototyp J 19:418–429. doi:10.1108/RPJ-03-2012-0019

    Article  Google Scholar 

  15. Amorim FL, Lohrengel A, Neubert V et al (2014) Selective laser sintering of Mo-CuNi composite to be used as EDM electrode. Rapid Prototyp J 20:59–68. doi:10.1108/RPJ-04-2012-0035

    Article  Google Scholar 

  16. Czelusniak T, Amorim FL, Higa CF, Lohrengel A (2014) Development and application of copper–nickel zirconium diboride as EDM electrodes manufactured by selective laser sintering. Int J Adv Manuf Technol 72:905–917. doi:10.1007/s00170-014-5728-4

    Article  Google Scholar 

  17. Czelusniak T, Amorim FL, Higa CF, Lohrengel A (2014) Development and application of new composite materials as EDM electrodes manufactured via selective laser sintering. Int J Adv Manuf Technol 72:1503–1512. doi:10.1007/s00170-014-5765-z

    Article  Google Scholar 

  18. Fahrenholtz WG, Hilmas GE, Talmy IG, Zaykoski JA (2007) Refractory diborides of zirconium and hafnium. J Am Ceram Soc 90:1347–1364. doi:10.1111/j.1551-2916.2007.01583.x

    Article  Google Scholar 

  19. Monteverde F, Guicciardi S, Bellosi A (2003) Advances in microstructure and mechanical properties of zirconium diboride based ceramics. Mater Sci Eng A 346:310–319. doi:10.1016/S0921-5093(02)00520-8

    Article  Google Scholar 

  20. Williams JD, Deckard CR (1998) Advances in modeling the effects of selected parameters on the SLS process. Rapid Prototyp J 4:90–100. doi:10.1108/13552549810210257

    Article  Google Scholar 

  21. Tang Y, Loh HT, Wong YS et al (2003) Direct laser sintering of a copper-based alloy for creating three-dimensional metal parts. J Mater Process Technol 140:368–372. doi:10.1016/S0924-0136(03)00766-0

    Article  Google Scholar 

  22. Delannay F, Froyen L, Deruyttere A (1987) The wetting of solids by molten metals and its relation to the preparation of metal-matrix composites composites. J Mater Sci 22:1–16. doi:10.1007/BF01160545

    Article  Google Scholar 

  23. Chrysanthou A, Erbaccio G (1995) Production of copper-matrix composites by in situ processing. J Mater Sci 30:6339–6344. doi:10.1007/BF00369685

    Article  Google Scholar 

  24. Muolo ML, Ferrera E, Novakovic R, Passerone A (2003) Wettability of zirconium diboride ceramics by Ag, Cu and their alloys with Zr. Scr Mater 48:191–196. doi:10.1016/S1359-6462(02)00361-5

    Article  Google Scholar 

  25. Touloukian YS, DeWitt DP (1970) Thermal radiative properties - metallic elements and alloys, vol 7, Thermophysical properties of matter—the TPRC data series. IFI Plenum, New York

    Book  Google Scholar 

  26. Leong CC, Lu L, Fuh JYH, Wong YS (2002) In-situ formation of copper matrix composites by laser sintering. Mater Sci Eng A A338:81–88. doi:10.1016/S0921-5093(02)00050-3

    Article  Google Scholar 

  27. Zhu HH, Lu L, Fuh JYH (2004) Influence of binder’s liquid volume fraction on direct laser sintering of metallic powder. Mater Sci Eng A 371:170–177. doi:10.1016/j.msea.2003.11.048

    Article  Google Scholar 

  28. Agarwala M, Bourell D, Beaman J et al (1995) Direct selective laser sintering of metals. Rapid Prototyp J 1:26–36. doi:10.1108/13552549510078113

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fred L. Amorim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Czelusniak, T., Amorim, F.L. Influence of metallic matrix on the densification behavior of zirconium diboride copper nickel composite processed by laser sintering. Int J Adv Manuf Technol 87, 2353–2362 (2016). https://doi.org/10.1007/s00170-016-8624-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-8624-2

Keywords

Navigation