Skip to main content
Log in

Influence of oxygen content on the machinability of Ti-6Al-4V alloy

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Titanium alloys are widely employed in many aerospace components due to their high strength-to-weight ratio, good corrosion resistance and fatigue properties, maintained at relatively high temperatures. Nevertheless, machining these materials efficiently has become a challenge in a sector that demands high productivity rates and minimal manufacturing times. This work analyses the machinability of the α + β Ti-6Al-4V alloy in rough turning. Since oxygen is one of the elements that most affects the mechanical properties of titanium alloys, the aim is to understand its influence on the machinability of these materials. To do so, two different oxygen contents of 1200 and 2000 ppm are tested. A comprehensive material characterisation of both materials is carried out in order to clearly establish their differences: chemical composition, microstructure and mechanical properties (yield strength and hardness of the phases by nanoindentation). Machining trials consist of (i) tool life tests, which include a tool wear analysis, and (ii) cutting fundamental turning tests, in which the cutting forces and the chip form are studied. The work concludes that Ti-6Al-4V alloy with the highest oxygen content has the worst machinability (~15 % lower compared to lowO), due to its higher volume fraction of β + αs phase, slightly harder αp and greater yield strength, which generates higher mechanical and thermal tool wear. Thus, oxygen is a key composition element that should be controlled in machining titanium alloys, if robust results in tool life are expected to be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Machado AR, Wallbank J (1990) Machining of titanium and its alloys—a review. Proc Inst Mech Eng B J Eng Manuf 204(1):53–60. doi:10.1243/PIME_PROC_1990_204_047_02

    Article  Google Scholar 

  2. Rendigs KH, Knower M (2010) Metal materials in Airbus A380, 2nd Izmir Global Aerospace & Offset Conference, Turkey

  3. Ezugwu EO, Wang ZM (1997) Titanium alloys and their machinability—a review. J Mater Process Technol 68(3):262–274. doi:10.1016/S0924-0136(96)00030-1

    Article  Google Scholar 

  4. Pramanik A (2014) Problems and solutions in machining of titanium alloys. Int J Adv Manuf Technol 70(5–8):919–928. doi:10.1007/s00170-013-5326-x

    Article  Google Scholar 

  5. Boyer RR (2010) Attributes, characteristics, and applications of titanium and its alloys. JOM 62(5):21–24. doi:10.1007/s11837-010-0071-1

    Article  Google Scholar 

  6. Boyer RR, Briggs RD (2005) The use of β titanium alloys in the aerospace industry. J Mater Eng Perform 14(6):681–685. doi:10.1361/105994905X75448

    Article  Google Scholar 

  7. Boyer RR, Welsch G, Collings EW (1994) Materials properties handbook: titanium alloys, ASM International

  8. Lütjering G, Williams JC (2003) Titanium, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  9. Armendia M, Osborne P, Garay A, Belloso J, Turner S, Arrazola PJ (2012) Influence of heat treatment on the machinability of titanium alloys. Mater Manuf Process 27(4):457–461. doi:10.1080/10426914.2011.585499

    Article  Google Scholar 

  10. Rashid RR, Sun S, Wang G, Dargusch MS (2011) Machinability of a near beta titanium alloy. Proc Inst Mech Eng B J Eng Manuf 225:2151–2162. doi:10.1177/2041297511406649

    Article  Google Scholar 

  11. Rashid RR, Palanisamy S, Sun S, Dargusch MS (2015) Tool wear mechanisms involved in crater formation on uncoated carbide tool when machining Ti6Al4V alloy. Int J Adv Manuf Technol: 1–9. doi: 10.1007/s00170-015-7668-z

  12. Arrazola PJ, Garay A, Iriarte LM, Armendia M, Marya S, Le Maitre F (2009) Machinability of titanium alloys (Ti6Al4V and Ti555.3). J Mater Process Technol 209(5):2223–2230. doi:10.1016/j.jmatprotec.2008.06.020

    Article  Google Scholar 

  13. ISO 3685 (1993) Tool life testing with single-point turning tools

  14. Machai C, Biermann D (2011) Machining of β-titanium-alloy Ti-10V-2Fe-3Al under cryogenic conditions: cooling with carbon dioxide snow. J Mater Process Technol 211(6):1175–1183. doi:10.1016/j.jmatprotec.2011.01.022

    Article  Google Scholar 

  15. Jawaid A, Che-Haron CH, Abdullah A (1999) Tool wear characteristics in turning of titanium alloy Ti-6246. J Mater Process Technol 92:329–334. doi:10.1016/S0924-0136(99)00246-0

    Article  Google Scholar 

  16. Ayed Y, Germain G, Ammar A, Furet B (2013) Experimental study of tool wear mechanisms in conventional and high pressure coolant assisted machining of titanium alloy Ti17. Key Eng Mater 554:1961–1966. doi:10.4028/www.scientific.net/KEM.554-557.1961

    Article  Google Scholar 

  17. Palanisamy S, McDonald SD, Dargusch MS (2009) Effects of coolant pressure on chip formation while turning Ti6Al4V alloy. Int J Mach Tools Manuf 49(9):739–743. doi:10.1016/j.ijmachtools.2009.02.010

    Article  Google Scholar 

  18. Nandy AK, Gowrishankar MC, Paul S (2009) Some studies on high-pressure cooling in turning of Ti–6Al–4V. Int J Mach Tools Manuf 49(2):182–198. doi:10.1016/j.ijmachtools.2008.08.008

    Article  Google Scholar 

  19. Nouari M, Makich H (2014) Analysis of physical cutting mechanisms and their effects on the tool wear and chip formation process when machining aeronautical titanium alloys: Ti-6Al-4V and Ti-55531, Machining of titanium alloys. Springer, Belin, pp 79–111. doi:10.1016/j.ijrmhm.2013.04.011

    Google Scholar 

  20. Corduan N, Himbart T, Poulachon G, Dessoly M, Lambertin M, Vigneau J, Payoux B (2003) Wear mechanisms of new tool materials for Ti-6AI-4V high performance machining. CIRP Ann Manuf Technol 52(1):73–76. doi:10.1016/S0007-8506(07)60534-4

    Article  Google Scholar 

  21. Hartung PD, Kramer BM, Von Turkovich BF (1982) Tool wear in titanium machining. CIRP Ann Manuf Technol 31(1):75–80. doi:10.1016/S0007-8506(07)63272-7

    Article  Google Scholar 

  22. Pervaiz S, Deiab I, Darras B (2013) Power consumption and tool wear assessment when machining titanium alloys. Int J Precis Eng Manuf 14(6):925–936. doi:10.1007/s12541-013-0122-y

    Article  Google Scholar 

  23. Ezugwu EO (2005) Key improvements in the machining of difficult-to-cut aerospace superalloys. Int J Mach Tools Manuf 45(12):1353–1367. doi:10.1016/j.ijmachtools.2005.02.003

    Article  Google Scholar 

  24. Da Silva RB, Machado AR, Ezugwu EO, Bonney J, Sales WF (2013) Tool life and wear mechanisms in high speed machining of Ti-6Al-4V alloy with PCD tools under various coolant pressures. J Mater Process Technol 213(8):1459–1464. doi:10.1016/j.jmatprotec.2013.03.008

    Article  Google Scholar 

  25. Sun FJ, Qu SG, Pan YX, Li XQ, Li FL (2015) Effects of cutting parameters on dry machining Ti-6Al-4V alloy with ultra-hard tools. Int J Adv Manuf Technol 79(1–4):351–360. doi:10.1007/s00170-014-6717-3

    Article  Google Scholar 

  26. Olortegui-Yume JA, Kwon PY (2007) Tool wear mechanisms in machining. Int J Mach Mach Mater 2(3–4):316–334. doi:10.1504/IJMMM.2007.015469

    Google Scholar 

  27. Takeyama H, Murata R (1963) Basic investigation of tool wear. J Manuf Sci Eng 85(1):33–37. doi:10.1115/1.3667575

    Google Scholar 

  28. Attanasio A, Ceretti E, Rizzuti S, Umbrello D, Micari F (2008) 3D finite element analysis of tool wear in machining. CIRP Ann Manuf Technol 57(1):61–64. doi:10.1016/j.cirp.2008.03.123

    Article  Google Scholar 

  29. Odelros S (2012) Tool wear in titanium machining, Uppsala Universitet

  30. Dearnley PA, Grearson AN (1986) Evaluation of principal wear mechanisms of cemented carbides and ceramics used for machining titanium alloy IMI 318. Mater Sci Technol 2(1):47–58. doi:10.1179/026708386790123611

    Article  Google Scholar 

  31. Astakhov VP (2004) The assessment of cutting tool wear. Int J Mach Tools Manuf 44(6):637–647. doi:10.1016/j.ijmachtools.2003.11.006

    Article  Google Scholar 

  32. Sun S, Brandt M, Dargusch MS (2009) Characteristics of cutting forces and chip formation in machining of titanium alloys. Int J Mach Tools Manuf 49(7):561–568. doi:10.1016/j.ijmachtools.2009.02.008

    Article  Google Scholar 

  33. Hua J, Shivpuri R (2004) Prediction of chip morphology and segmentation during the machining of titanium alloys. J Mater Process Technol 150(1):124–133. doi:10.1016/j.jmatprotec.2004.01.028

    Article  Google Scholar 

  34. Obikawa T, Usui E (1996) Computational machining of titanium alloy—finite element modeling and a few results. J Manuf Sci E-T ASME 118(2):208–215. doi:10.1115/1.2831013

    Article  Google Scholar 

  35. Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7(6):1564–1583. doi:10.1557/JMR.1992.1564

    Article  Google Scholar 

  36. Alkorta J, Martínez-Esnaola JM, Gil Sevillano J (2011) Towards a reliable procedure for the measurement of elastic modulus in instrumented indentation. Philos Mag 91(7–9):1400–1408. doi:10.1080/14786435.2010.502142

    Article  Google Scholar 

  37. Fischer-Cripps AC (2011) Nanoindentation, Springer Science & Business Media

  38. Maharaj D, Bhushan B (2014) Scale effects of nanomechanical properties and deformation behavior of Au nanoparticle and thin film using depth sensing nanoindentation. Beilstein J Nanotechnol 5(1):822–836. doi:10.3762/bjnano.5.944

    Article  Google Scholar 

  39. Nix WD, Gao H (1998) Indentation size effects in crystalline materials: a law for strain gradient plasticity. J Mech Phys Solids 46(3):411–425. doi:10.1016/S0022-5096(97)00086-0

    Article  MATH  Google Scholar 

  40. Alkorta J, Martinez-Esnaola JM, Sevillano JG (2006) Detailed assessment of indentation size-effect in recrystallized and highly deformed niobium. Acta Mater 54(13):3445–3452. doi:10.1016/j.actamat.2006.03.034

    Article  Google Scholar 

  41. Germain G, Morel A, Braham-Bouchnak T (2013) Identification of material constitutive laws representative of machining conditions for two titanium alloys: Ti6Al4V and Ti555-3. J Eng Mater-T ASME 135(3):031002. doi:10.1115/1.4023674

    Article  Google Scholar 

  42. Arrazola PJ, Garay A, Sacristan I, Fernandez E, Aperribay J (2014) Machinability of titanium alloys, proceedings of 19th-20th machining innovations conference. New Production Technologies in Aerospace Industry, Hannover

    Google Scholar 

  43. Khan AS, Kazmi R, Farrokh B, Zupan M (2007) Effect of oxygen content and microstructure on the thermo-mechanical response of three Ti–6Al–4V alloys: experiments and modeling over a wide range of strain-rates and temperatures. Int J Plast 23(7):1105–1125. doi:10.1016/j.ijplas.2006.10.007

    Article  MATH  Google Scholar 

  44. Barkia B, Doquet V, Couzinié JP, Guillot I, Héripré E (2015) In situ monitoring of the deformation mechanisms in titanium with different oxygen contents. Mat Sci Eng A-Struct 636:91–102. doi:10.1016/j.msea.2015.03.044

    Article  Google Scholar 

  45. Ráczkövi L (2010) Tool life of cutting tool in case of hard turning. Hung J Ind Chem 38(2):133–136

    Google Scholar 

  46. Hua J, Shivpuri R (2005) A cobalt diffusion based model for predicting crater wear of carbide tools in machining titanium alloys. J Eng Mater Technol 127:136–144. doi:10.1115/1.1839192

    Article  Google Scholar 

  47. Sutter G, List G (2013) Very high speed cutting of Ti–6Al–4V titanium alloy–change in morphology and mechanism of chip formation. Int J Mach Tools Manuf 66:37–43. doi:10.1016/j.ijmachtools.2012.11.004

    Article  Google Scholar 

  48. Cotterell M, Byrne G (2008) Dynamics of chip formation during orthogonal cutting of titanium alloy Ti–6Al–4V. CIRP Ann Manuf Technol 57(1):93–96. doi:10.1016/j.cirp.2008.03.007

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irantzu Sacristan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sacristan, I., Garay, A., Hormaetxe, E. et al. Influence of oxygen content on the machinability of Ti-6Al-4V alloy. Int J Adv Manuf Technol 86, 2989–3005 (2016). https://doi.org/10.1007/s00170-015-8317-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-015-8317-2

Keywords

Navigation