Skip to main content
Log in

Numerical analysis of different heating systems for warm sheet metal forming

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The main goal of this study is to present an analysis of different heating methods frequently used in laboratory scale and in the industrial practice to heat blanks at warm temperatures. In this context, the blank can be heated inside the forming tools (internal method) or using a heating system (external method). In order to perform this analysis, a finite element model is firstly validated with the simulation of the direct resistance system used in a Gleeble testing machine. The predicted temperature was compared with the temperature distribution recorded experimentally and a good agreement was found. Afterwards, a finite element model is used to predict the temperature distribution in the blank during the heating process, when using different heating methods. The analysis also includes the evaluation of a cooling phase associated to the transport phase for the external heating methods. The results of this analysis show that neglecting the heating phase and a transport phase could lead to inaccuracies in the simulation of the forming phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. González Palencia JC, Furubayashi T, Nakata T (2012) Energy use and CO2 emissions reduction potential in passenger car fleet using zero emission vehicles and lightweight materials. Energy 48:548–565. doi:10.1016/j.energy.2012.09.041

    Article  Google Scholar 

  2. Hirsch J (2014) Recent development in aluminium for automotive applications. Trans Nonferrous Met Soc Chin 24:1995–2002. doi:10.1016/S1003-6326(14)63305-7

    Article  Google Scholar 

  3. Kulekci MK (2007) Magnesium and its alloys applications in automotive industry. Int J Adv Manuf Technol 39:851–865. doi:10.1007/s00170-007-1279-2

    Article  Google Scholar 

  4. Toros S, Ozturk F, Kacar I (2008) Review of warm forming of aluminum-magnesium alloys. J Mater Process Technol 207:1–12. doi:10.1016/j.jmatprotec.2008.03.057

    Article  Google Scholar 

  5. Kurukuri S, van den Boogaard AH, Miroux A, Holmedal B (2009) Warm forming simulation of Al–Mg sheet. J Mater Process Technol 209:5636–5645. doi:10.1016/j.jmatprotec.2009.05.024

    Article  Google Scholar 

  6. Ghosh M, Miroux A, Werkhoven RJ et al (2014) Warm deep-drawing and post drawing analysis of two Al–Mg–Si alloys. J Mater Process Technol 214:756–766. doi:10.1016/j.jmatprotec.2013.10.020

    Article  Google Scholar 

  7. Abedrabbo N, Pourboghrat F, Carsley J (2007) Forming of AA5182-O and AA5754-O at elevated temperatures using coupled thermo-mechanical finite element models. Int J Plast 23:841–875. doi:10.1016/j.ijplas.2006.10.005

    Article  MATH  Google Scholar 

  8. Laurent H, Coër J, Manach PY et al (2015) Experimental and numerical studies on the warm deep drawing of an Al–Mg alloy. Int J Mech Sci 93:59–72. doi:10.1016/j.ijmecsci.2015.01.009

    Article  Google Scholar 

  9. Grèze R, Manach PY, Laurent H et al (2010) Influence of the temperature on residual stresses and springback effect in an aluminium alloy. Int J Mech Sci 52:1094–1100. doi:10.1016/j.ijmecsci.2010.04.008

    Article  Google Scholar 

  10. Coër J, Manach PY, Laurent H et al (2013) Piobert–Lüders plateau and Portevin–Le Chatelier effect in an Al–Mg alloy in simple shear. Mech Res Commun 48:1–7. doi:10.1016/j.mechrescom.2012.11.008

    Article  Google Scholar 

  11. Ghaffari Tari D, Worswick MJ, Winkler S (2013) Experimental studies of deep drawing of AZ31B magnesium alloy sheet under various thermal conditions. J Mater Process Technol 213:1337–1347. doi:10.1016/j.jmatprotec.2013.01.028

    Article  Google Scholar 

  12. Hung N, Marion M (2012) Improved formability of aluminum alloys using laser induced hardening of tailored heat treated blanks. Phys Procedia 39:318–326. doi:10.1016/j.phpro.2012.10.044

    Article  Google Scholar 

  13. Larsson L (2005) Warm sheet metal forming with localized in-tool induction heating. Lund University

  14. Hasanuzzaman M, Rahim NA, Hosenuzzaman M et al (2012) Energy savings in the combustion based process heating in industrial sector. Renew Sustain Energy Rev 16:4527–4536. doi:10.1016/j.rser.2012.05.027

    Article  Google Scholar 

  15. Zhao PJ, Chen ZH, Dong CF (2014) Failure analysis of warm stamping of magnesium alloy sheet based on an anisotropic damage model. J Mater Eng Perform 23:4032–4041. doi:10.1007/s11665-014-1214-2

    Article  Google Scholar 

  16. Harrison NR, Ilinich A, Friedman PA, et al. (2013) Optimization of high-volume warm forming for lightweight sheet

  17. Menezes LF, Teodosiu C (2000) Three-dimensional numerical simulation of the deep-drawing process using solid finite elements. J Mater Process Technol 97:100–106. doi:10.1016/S0924-0136(99)00345-3

    Article  Google Scholar 

  18. Oliveira MC, Alves JL, Menezes LF (2008) Algorithms and strategies for treatment of large deformation frictional contact in the numerical simulation of deep drawing process. Arch Comput Methods Eng 15:113–162. doi:10.1007/s11831-008-9018-x

    Article  MathSciNet  MATH  Google Scholar 

  19. Kolleck R, Veit R, Merklein M et al (2009) Investigation on induction heating for hot stamping of boron alloyed steels. CIRP Ann - Manuf Technol 58:275–278. doi:10.1016/j.cirp.2009.03.090

    Article  Google Scholar 

  20. Takuda H, Mori K, Masuda I et al (2002) Finite element simulation of warm deep drawing of aluminium alloy sheet when accounting for heat conduction. J Mater Process Technol 120:412–418. doi:10.1016/S0924-0136(01)01180-3

    Article  Google Scholar 

  21. Lade J, Banoth BN, Gupta AK, Singh SK (2014) Metallurgical studies of austenitic stainless steel 304 under warm deep drawing. J Iron Steel Res Int 21:1147–1151. doi:10.1016/S1006-706X(14)60197-7

    Article  Google Scholar 

  22. Koh Y, Kim D, Seok D et al (2015) Characterization of mechanical property of magnesium AZ31 alloy sheets for warm temperature forming. Int J Mech Sci 93:204–217. doi:10.1016/j.ijmecsci.2015.02.001

    Article  Google Scholar 

  23. Krajewski PE (2001) Elevated temperature forming of sheet magnesium alloys

  24. Rudnev V, Loveless D, Cook RL, Black M (2002) Handbook of induction heating. CRC Press, Boca Raton

    Google Scholar 

  25. Codrington J, Nguyen P, Ho SY, Kotousov A (2009) Induction heating apparatus for high temperature testing of thermo-mechanical properties. Appl Therm Eng 29:2783–2789. doi:10.1016/j.applthermaleng.2009.01.013

    Article  Google Scholar 

  26. Takuda H, Morishita T, Kinoshita T, Shirakawa N (2005) Modelling of formula for flow stress of a magnesium alloy AZ31 sheet at elevated temperatures. J Mater Process Technol 164–165:1258–1262. doi:10.1016/j.jmatprotec.2005.02.034

    Article  Google Scholar 

  27. Pellegrini D, Ghiotti A, Bruschi S (2011) Effect of warm forming conditions on AZ31B flow behaviour and microstructural characteristics. Int J Mater Form 4:155–161. doi:10.1007/s12289-010-1025-4

    Article  Google Scholar 

  28. Mori K (2012) Smart hot stamping of ultra-high strength steel parts. Trans Nonferrous Met Soc Chin 22:s496–s503. doi:10.1016/S1003-6326(12)61752-X

    Article  Google Scholar 

  29. Mori K, Maki S, Tanaka Y (2005) Warm and hot stamping of ultra high tensile strength steel sheets using resistance heating. CIRP Ann - Manuf Technol 54:209–212. doi:10.1016/S0007-8506(07)60085-7

    Article  Google Scholar 

  30. Das S, Barekar N, El Fakir O et al (2015) Influence of intensive melt shearing on subsequent hot rolling and the mechanical properties of twin roll cast AZ31 strips. Mater Lett 144:54–57. doi:10.1016/j.matlet.2015.01.017

    Article  Google Scholar 

  31. Coër J, Bernard C, Laurent H et al (2011) The effect of temperature on anisotropy properties of an aluminium alloy. Exp Mech 51:1185–1195. doi:10.1007/s11340-010-9415-6

    Article  Google Scholar 

  32. Doege E, Dröder K (2001) Sheet metal forming of magnesium wrought alloys—formability and process technology. J Mater Process Technol 115:14–19. doi:10.1016/S0924-0136(01)00760-9

    Article  Google Scholar 

  33. Palumbo G, Sorgente D, Tricarico L et al (2007) Numerical and experimental investigations on the effect of the heating strategy and the punch speed on the warm deep drawing of magnesium alloy AZ31. J Mater Process Technol 191:342–346. doi:10.1016/j.jmatprotec.2007.03.095

    Article  Google Scholar 

  34. Lee YS, Kim MC, Kim SW et al (2007) Experimental and analytical studies for forming limit of AZ31 alloy on warm sheet metal forming. J Mater Process Technol 187–188:103–107. doi:10.1016/j.jmatprotec.2006.11.118

    Article  Google Scholar 

  35. Bathe KJ (1996) Finite element procedures. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  36. Rodrigues JMC, Martins PAF (2002) Finite element modelling of the initial stages of a hot forging cycle. Finite Elem Anal Des 38:295–305. doi:10.1016/S0168-874X(01)00065-8

    Article  MATH  Google Scholar 

  37. Zhu J, Taylor ZRL, Zienkiewicz OC (2005) The finite element method: its basis and fundamentals. Butterworth-Heinemann

  38. Hughes TJR (2012) The finite element method: linear static and dynamic finite element analysis. Courier Corporation

  39. Madoliat R, Ghasemi A (2008) Inverse finite element formulations for transient heat conduction problems. Heat Mass Transf 44:569–577. doi:10.1007/s00231-007-0270-7

    Article  Google Scholar 

  40. Vaz Jr M (2000) Simulação de problemas de acoplamento termomecânico

  41. Menezes LF, Neto DM, Oliveira MC, Alves JL (2011) Improving computational performance through HPC techniques: case study using DD3IMP in-house code. AIP Conf Proc 1353:1220–1225. doi:10.1063/1.3589683

    Article  Google Scholar 

  42. Andrade-Campos A, da Silva F, Teixeira-Dias F (2007) Modelling and numerical analysis of heat treatments on aluminium parts. Int J Numer Methods Eng 70:582–609. doi:10.1002/nme.1905

    Article  MATH  Google Scholar 

  43. Xing HL, Makinouchi A (2002) FE modeling of thermo-elasto-plastic finite deformation and its application in sheet warm forming. Eng Comput 19:392–410. doi:10.1108/02644400210430172

    Article  MATH  Google Scholar 

  44. Stratton JA (1941) Electromagnetic theory. McGraw-Hill, New York

    MATH  Google Scholar 

  45. Zinn S, Semiatin SL (1988) Elements of induction heating

  46. Kardoulaki E, Lin J, Balint D, Farrugia D (2014) Investigation of the effects of thermal gradients present in Gleeble high-temperature tensile tests on the strain state for free cutting steel. J Strain Anal Eng Des 49:521–532. doi:10.1177/0309324714531950

    Article  Google Scholar 

  47. Numisheet 2008 (2008) The Numisheet Benchmark Study, Benchmark Problem BM03

  48. Lloyd JR, Moran WR (1974) Natural convection adjacent to horizontal surface of various planforms. J Heat Transfer 96:443–447

    Article  Google Scholar 

  49. Incropera FP (2011) Fundamentals of heat and mass transfer. Wiley, Canada

    Google Scholar 

  50. Kim HS, Koç M (2008) Numerical investigations on springback characteristics of aluminum sheet metal alloys in warm forming conditions. J Mater Process Technol 204:370–383. doi:10.1016/j.jmatprotec.2007.11.059

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. P. Martins.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martins, J.M.P., Alves, J.L., Neto, D.M. et al. Numerical analysis of different heating systems for warm sheet metal forming. Int J Adv Manuf Technol 83, 897–909 (2016). https://doi.org/10.1007/s00170-015-7618-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-015-7618-9

Keywords

Navigation