Skip to main content
Log in

Experimental investigation of machinability parameters in high-speed micro-end milling of titanium (grade-2)

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This paper presents the experimental investigation of machinability parameters in high-speed micro-end milling of Ti alloy (grade-2) with uncoated tungsten carbide micro-end mills to understand the cutting mechanism and surface roughness formation. Micro-milling experiments are carried out by using a Taguchi method. The lower the better–quality characteristic in signal-to-noise ratio, analysis of variance and regression analysis are considered to analyze the effect of machining parameters on cutting forces and surface roughness. Model validation is performed by comparing analytical predicted results of cutting forces with experimental and Taguchi approach that are in good agreement. The investigation showed that micro-milling at high spindle speeds, low depth of cut, and low feed rate ensures the high quality of surface roughness and lower cutting forces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brown SA, Lemons JE (1996) Medical Applications of Titanium and its Alloys: The Material and Biological Issues. ASTM, Pennsylvania. doi:10.1520/STP1272-EB

    Book  Google Scholar 

  2. Jackson MJ, Ahmed W (2007) Surface engineered surgical tools and medical devices. Springer Science, USA. doi:10.1007/978-0-387-27028-9

    Book  Google Scholar 

  3. Elias CN, Lima JHC, Valiev R, Meyers MA (2008) Biomedical applications of titanium and its alloys. J Miner Met Mater Soc 60(3):46–49. doi:10.1007/s11837-008-0031-1

    Article  Google Scholar 

  4. Engelbrecht M E, Treurnicht N F, Akdoganand G, Sacks N, (2013) Functional performance and machinability of titanium alloys for medical implants: a review. SAIIE25 Proceedings, Stellenbosch, South Africa, 9–11 July 2013

  5. Bao WY, Tansel IN (2000) Modelling micro end-milling operations. Part-I analytical cutting force model. Int J Mach Tools Manuf 40:2155–2173, doi:10.1.1.417.9088

  6. Bao WY, Tansel IN (2000) Modelling micro end-milling operations. Part-II tool run out. Int J Mach Tools Manuf 40:2175–2192, doi:10.1.1.417.6445

  7. Bao WY, Tansel IN (2000) Modelling micro end-milling operations. Part-III influence of tool wear. Int J Mach Tools Manuf 40:2193–2211, doi:10.1.1.417.6873

  8. Lai WH (2000) Modeling of cutting forces in end milling operations. J Sci Eng Tamkang 3(1):15–22, doi:10.1.1.138.410

  9. Vogler MP, Devor RE, Kapoor SG (2003) Micro-structure-level force prediction model for micro-milling of multi-phase materials. ASME J Manuf Sci Eng 125:202–209. doi:10.1115/1.1556402

    Article  Google Scholar 

  10. Budak E, Altintas Y, Armarego EJA (1996) Prediction of milling force coefficients from orthogonal cutting data. ASME J Eng Ind 118:216–224. doi:10.1115/1.2831014

    Google Scholar 

  11. Mamedov, Ehsan S, Ismail K (2013) Machining forces and tool deflections in micro milling. 14th Procedia CIRP conference on modelling of machining operations. 147–151. doi:10.1016/j.procir.2013.06.080.

  12. Srinivasa YV, Shunmugam MS (2013) Mechanistic model for prediction of cutting forces in micro end-milling and experimental comparison. Int J Mach Tools Manuf 67:18–27. doi:10.1016/j.ijmachtools.2012.12.004

    Article  Google Scholar 

  13. Kuram E, Ozcelik B (2013) Multi-objective optimization using Taguchi based grey relational analysis for micro-milling of Al 7075 material with ball nose end mill. Measurement 46:1849–1864. doi:10.1016/j.measurement.2013.02.002

    Article  Google Scholar 

  14. Rodríguez P, Labarga JE (2013) A new model for the prediction of cutting forces in micro end-milling operations. J Mater Process Technol 213:261–268. doi:10.1016/j.jmatprotec.2012.09.009

    Article  Google Scholar 

  15. Afazov SM, Ratchev SM, Segal J, Popov AA (2012) Chatter modelling in micro-milling by considering process nonlinearities. Int J Mach Tools Manuf 56:28–38. doi:10.1016/j.ijmachtools.2011.12.010

    Article  Google Scholar 

  16. Saptaji K, Subbiah S, Dhupia JS (2012) Effect of side edge angle and effective rake angle on top burrs in micro-milling. J Precis Eng 36:444–450. doi:10.1016/j.precisioneng.2012.01.008

    Article  Google Scholar 

  17. Wang H, Qin X, Ren C, Wang Q (2012) Prediction of cutting forces in helical milling process. Int J Adv Manuf Technol 58:849–859. doi:10.1007/s00170-011-3435-y

    Article  Google Scholar 

  18. Kang YH, Zheng CM (2012) Fourier analysis for micro end milling mechanics. Int J Mech Sci 65:105–114. doi:10.1016/j.ijmecsci.2012.09.008

    Article  MathSciNet  Google Scholar 

  19. Jaffery SI, Driver N, Mativenga PY (2010) Analysis of process parameters in the micro machining of Ti-6Al-4V alloy. Proceedings of the 36th international MATADOR conference. Springer, London. doi: 10.1007/978-1-84996-432-6.

  20. Kang IS, Kim JS, Kim JH, Kang MC, Seo YW (2007) A mechanistic model of cutting force in the micro end milling process. J Mater Process Technol 187–188:250–255. doi:10.1016/j.jmatprotec.2006.11.155

    Article  Google Scholar 

  21. Wang SM, Chen DF, Jang MC, Tsooj S (2012) Development of micro milling force model and cutting parameter optimization. Trans Nonferrous Metals Soc China. doi:10.1016/S1003-6326(12)61815-9

    Google Scholar 

  22. Mhd I, Hangand BT, Hon KKB (2012) Analytical model prediction: micro-cutting tool forces with the effect of friction on machining titanium alloy (Ti-6Al-4V). World Acad Sci Eng Technol 68:1634–1637

  23. Thepsonthi T, Özel T (2012) Multi-objective process optimization for micro end milling Of Ti-6Al-4V titanium alloy. Int J Adv Manuf Technol 63(9-12):903–914. doi:10.1007/s00170-012-3980-z

    Article  Google Scholar 

  24. Farina S, Thepsonti T, Ceretti E, Özel T (2011) Determination of specific forces and tool deflections in micro-milling of Ti-6Al-4V alloy using finite element simulations and analysis. The 14th international ESAFORM conference on material forming. AIP, New York, 1353: 645–650. doi: 10.1063/1.3589588

  25. Özel T, Thepsonthi T, Ulutan D, Lu BK (2011) Experiments and finite element simulations on micro-milling of Ti–6Al–4V alloy with uncoated and CBN coated micro-tools. CIRP Ann Manuf Technol 60:85–88. doi:10.1016/j.cirp.2011.03.087

    Article  Google Scholar 

  26. Bajpai V, Kushwaha AK, Singh RK (2013) Burr formation and surface quality in high speed micromilling of titanium alloy (Ti-6Al-4V). ASME 2013 international manufacturing science and engineering conference, Madison, Wisconsin, USA. ASME, New York, 2:1216–1224. doi: 10.1115/MSEC2013-1216

  27. Afzov SM, Ratchev SM, Segal J (2010) Modelling and simulation of micro-milling cutting forces. J Mater Process Technol 210:2154–2162. doi:10.1016/j.jmatprotec.2010.07.033

    Article  Google Scholar 

  28. Cheng K (2009) Machining dynamics- fundamentals, applications and practices, 1st edn. Springer, London. doi:10.1007/978-1-84628-368-0

    Google Scholar 

  29. Altintas Y (2012) Manufacturing automation-metal cutting mechanics, machine tool vibrations and CNC design, 2nd edn. Cambridge University Press, New York. doi:10.1017/CBO9780511843723.002

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Bandapalli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bandapalli, C., Singh, K.K., Sutaria, B.M. et al. Experimental investigation of machinability parameters in high-speed micro-end milling of titanium (grade-2). Int J Adv Manuf Technol 85, 2139–2153 (2016). https://doi.org/10.1007/s00170-015-7443-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-015-7443-1

Keywords

Navigation