Skip to main content
Log in

Numerical estimation and practical validation of Hooputra’s ductile damage parameters

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Forming limit diagram (FLD) is a useful criterion for damage prediction, but not suitable for complex operations. Hooputra’s ductile damage (HDD) is a proper failure criterion which relies on three relatively difficult experimental tests for each material. In this paper, first, using the FLD criterion, the required difficult experimental tests of HDD criterion are simulated and the HDD parameters for St14 steel are numerically estimated. Then, to evaluate the obtained HDD parameters, damage behavior of the material in a number of benchmark tests is numerically predicted, employing the HDD criterion. Finally, the simulated results are compared with the practical observations and the identified HDD parameters are validated. Comparison of the results reveals the HDD parameters can be numerically and properly extracted, utilizing the FLD and avoiding the difficult experimental tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kachanov LM (1958) On the creep fracture time. Izv Akad Nauk USSR Otd Tekh 8:26–31

    Google Scholar 

  2. Rice JR, Tracey DM (1969) On ductile enlargement of triaxial stress field. J Mech Phys Solids 17:201–217

    Article  Google Scholar 

  3. Hancock JW, Mackenzie AC (1976) On the mechanisms of ductile failure in high-strength steels subjected to multi-axial stress-states. J Mech Phys Solids 24:147–169

    Article  Google Scholar 

  4. Johnson GR, Cook WH (1985) Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. J Eng Fract Mech 21:31–48

    Article  Google Scholar 

  5. Lemaitre J (1985) How to use damage mechanics. Nuclear Engineering Design 80:233–245

    Article  Google Scholar 

  6. Chaboche JL (1988) Continuum damage mechanics. Part I: general concepts; and Part II: damage growth, crack initiation and crack growth. J Appl Mech 55:59–72

    Article  Google Scholar 

  7. Lemaitre J (1992) A course on damage mechanics. Springer, Berlin

    Book  MATH  Google Scholar 

  8. Bao Y, Wierzbicki T (2004) A comparative study on various ductile crack formation criteria. J Eng Mater Technol 126:314–324

    Article  Google Scholar 

  9. Wierzbicki T, Bao Y, Lee Y, Bai Y (2005) Calibration and evaluation of seven fracture models. Int J Mech Sci 47:719–743

    Article  Google Scholar 

  10. Zimniak Z (2000) Implementation of forming limit stress diagram in FEM simulations. J Mater Process Technol 106:261–266

    Article  Google Scholar 

  11. Evangelista SH, Lirani J, Al-Qureshi HA (2002) Implementing a modified Marciniak-Kuczynski model using the finite element method for the simulation of sheet metal deep drawing. J Mater Process Technol 130–131:135–144

    Article  Google Scholar 

  12. Samuel M (2004) Numerical and experimental investigations of forming limit diagrams in metals sheet. J Mater Process Technol 153–154:424–431

    Article  Google Scholar 

  13. Yu Z, Lin Z, Zhao Y (2007) Evaluation of fracture limit in automotive aluminium alloy sheet forming. Mater Des 28:203–207

    Article  Google Scholar 

  14. Hossford WF, Caddell RM (1983) Metal forming mechanics and metallurgy. Prentice-hall press, Englewood cliffs

    Google Scholar 

  15. Hooputra H, Gese H, Dell H, Werner H (2004) Comprehensive failure model for crashworthiness simulation of aluminium extrusions. Int J Crash 9:449–463

    Article  Google Scholar 

  16. Zadpoor AA, Sinke J, Benedictus R (2009) Formability prediction of high strength aluminium sheets. Int J Plast 25:2269–2297

    Article  Google Scholar 

  17. Allahbakhsh HR, Saemi J, Hourali M (2011) Design optimization of square aluminum damage columns with crashworthiness criteria. Mechanika 17:187–192

    Article  Google Scholar 

  18. Dadrasi A (2012) An investigation on crashworthiness design of aluminum columns with damage criteria. Res J Recent Sci 1:19–24

    Google Scholar 

  19. Adewole KK, Race JM, Bull SJ (2013) Identification of micromechanical fracture model for predicting fracture performance of steel wires for civil engineering applications. Int J Civ Archit Struct Constr Eng 7:150–153

    Google Scholar 

  20. Marzbanrad J, Keshavarzi A, Haji Aboutalebi F (2014) Influence of elastic and plastic support on the energy absorption of the extruded aluminium tube using ductile failure criterion. Int J Crashworthiness 19:172–181

    Article  Google Scholar 

  21. Kolmogorov, WL. (1970) Spannungen Deformationen Bruch. Metallurgija. pp. 230–235.

  22. Hill MR, Panontin TL (2002) Micromechanical modeling of fracture initiation in 7050 aluminum. Eng Fract Mech 69:2163–2186

    Article  Google Scholar 

  23. (1986) DIN 1623, Steel flat products cold reduced sheet and strip–technical delivery conditions—general purpose structural steels. Springer, Berlin

  24. (2007) DIN 1623, Cold reduced sheet and strip–technical delivery conditions—general structural steels draft standard. Springer, Berlin

  25. Haji Aboutalebi F, Farzin M, Poursina M (2011) Numerical simulation and experimental validation of a ductile damage model for DIN 1623 St14 steel. Int J Adv Manuf Technol 53:157–165

    Article  Google Scholar 

  26. Haji Aboutalebi F, Farzin M, Mashayekhi M (2012) Numerical predictions and experimental validations of ductile damage evolution in sheet metal forming processes. Acta Mech Solida Sinica 25:638–650

    Article  Google Scholar 

  27. Takuda H, Mori K, Fujimoto H, Hatta N (1999) Prediction of forming limits in bore-expanding of sheet metals using ductile fracture criterion. J Mater Process Technol 92–93:433–438

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Haji Aboutalebi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haji Aboutalebi, F., Banihashemi, A. Numerical estimation and practical validation of Hooputra’s ductile damage parameters. Int J Adv Manuf Technol 75, 1701–1710 (2014). https://doi.org/10.1007/s00170-014-6275-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-014-6275-8

Keywords

Navigation