Skip to main content
Log in

Utilization of flow field simulations for cathode design in electrochemical machining of aerospace engine blisk channels

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Electrochemical machining (ECM) cathode flow field design is crucial to machining aerospace engine blisk channels. In order to reduce the cathode design cycle and cost in machining, 3D cathodes and flow field simulation model were developed to facilitate analysis the flow fields in reversed flow patterns. The electrolyte flow line was determined by the distributions of electrolyte pressure, the diameter of the back orifice, and the areas of the back orifices in locations A, B, and C. The simulation results were utilized to analyze the influence of the electrolyte flow line. To verify the accuracy of the simulation, the experiments were carried out. The simulation results were consistent with the experiment data. It indicates that electrolyte flow field simulation is an effective method to optimize cathode design. Utilizing this methodology can improve the ECM cathode design efficiency and reduce cathode revision time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rajurkar KP, Sundaram MM, Malshe AP (2013) Review of electrochemical and electrodischarge machining. Procedia CIRP 6:13–26

    Article  Google Scholar 

  2. Klocke F, Zeis M, Harst S, Klink A, Veselovac D, Baumgärtner M (2013) Modeling and simulation of the electrochemical machining (ECM) material removal process for the manufacture of aero engine components. Procedia CIRP 8:265–270

    Article  Google Scholar 

  3. Klocke F, Zeis M, Klink A (2012) Technological and economical capabilities of manufacturing titanium and nickel-based alloys via electrochemical machining (ECM). Key Eng Mat 504:1237–1242

    Article  Google Scholar 

  4. Klocke F, Zeis M, Klink A, Veselovac D (2012) Technological and economical comparison of roughing strategies via milling, EDM and ECM for titanium- and nickel-based blisks. Procedia CIRP 2:98–101

    Article  Google Scholar 

  5. Burger M, Koll L, Werner EA, Platz A (2012) Electrochemical machining characteristics and resulting surface quality of the nickel-base single-crystalline material LEK94. J Manuf Proc 14(1):62–70

    Article  Google Scholar 

  6. Holstein N, Krauss W, Konys J (2011) Development of novel tungsten processing technologies for electrochemical machining (ECM) of plasma facing components. Fusion Eng Des 86(9–11):1611–1615

    Article  Google Scholar 

  7. Qu NS, Fang XL, Zhang YD, Zhu D (2013) Enhancement of surface roughness in electrochemical machining of Ti6Al4V by pulsating electrolyte. Int J Adv Manuf Technol 69(9–12):2703–2709

    Article  Google Scholar 

  8. Tang L, Guo YF (2013) Experimental study of special purpose stainless steel on electrochemical machining of electrolyte composition. Mater Manuf Process 28(4):457–462

    Article  MathSciNet  Google Scholar 

  9. Tang L, Yang S (2013) Experimental investigation on the electrochemical machining of 00Cr12Ni9Mo4Cu2 material and multi-objective parameters optimization. Int J Adv Manuf Technol 67(9):2909–2916

    Article  Google Scholar 

  10. Tang L, Li B, Yang S, Duan L, Kang B (2014) The effect of electrolyte current density on the electrochemical machining S-03 material. Int J Adv Manuf Technol. doi:10.1007/s00170-014-5617-x, 1-9

    Article  Google Scholar 

  11. Kozak J, Chuchro M, Ruszaj A, Karbowski K (2000) The computer aided simulation of electrochemical process with universal spherical electrodes when machining sculptured surfaces. J Mater Process Technol 107(1):283–287

    Article  Google Scholar 

  12. Deconinck D, Van Damme S, Albu C, Hotoiu L, Deconinck J (2011) Study of the effects of heat removal on the copying accuracy of the electrochemical machining process. Electrochim Acta 56(16):5642–5649

    Article  Google Scholar 

  13. Deconinck D, Van Damme S, Deconinck J (2012) A temperature dependent multi-ion model for time accurate numerical simulation of the electrochemical machining process. Part I: theoretical basis. Electrochim Acta 60:321–328

    Article  Google Scholar 

  14. Deconinck D, Hoogsteen W, Deconinck J (2013) A temperature dependent multi-ion model for time accurate numerical simulation of the electrochemical machining process. Part III: experimental validation. Electrochim Acta 103:161–173

    Article  Google Scholar 

  15. Deconinck D, Deconinck J (2013) Multi-ion and temperature dependent numerical simulation of electrochemical machining. Procedia CIRP 6:475–478

    Article  Google Scholar 

  16. Davydov AD, Volgin VM, Lyubimov VV (2004) Electrochemical machining of metals: fundamentals of electrochemical shaping. Russ J Electrochem 40(12):1230–1265

    Article  Google Scholar 

  17. Xu ZY, Xu Q, Zhu D, Gong T (2013) A high efficiency electrochemical machining method of blisk channels. CIRP Ann-Manuf Technol 62:187–190

    Article  Google Scholar 

  18. Fan ZJ, Zhao GG, Zhang LJ (2012) Design of anasys-based cathode with complex groove. J China Ordinance 8(1):31–34

    Google Scholar 

  19. Fan ZJ, Wang GG, Tang L (2010) Design of device and experiment on magnetic field assisted electrochemical machining. Chin J Mech Eng 46(1):194–198 (in Chinese)

    Article  Google Scholar 

  20. Qu NS, Xu ZY (2013) Improving machining accuracy of electrochemical machining blade by optimization of cathode feeding directions. Int J Adv Manuf Technol 1-8

  21. Wang MH, Zhu D (2009) Simulation of fabrication for gas turbine blade turbulated cooling hole in ECM based on FEM. J Mater Process Technol 209(4):1747–1751

    Article  Google Scholar 

  22. Fujisawa T, Inaba K, Yamamoto M, Kato D (2008) Multiphysics simulation of electrochemical machining process for three-dimensional compressor blade. J Fluids Eng 130(8):0816021–0816028

    Article  Google Scholar 

  23. Hardisty H, Mileham AR (1999) Finite element computer investigation of the electrochemical machining process for a parabolically shaped moving tool eroding an arbitrarily shaped workpiece. Proc Inst Mech Eng B J Eng Manuf 213(8):787–798

    Article  Google Scholar 

  24. Paczkowski T, Zdrojewski J (2011) Boundary conditions analysis of ECM machining for curvilinear surfaces. J Polish CIMAC 6:193–198

    Google Scholar 

  25. Sun C, Zhu D, Li Z, Wang L (2006) Application of FEM to tool design for electrochemical machining freeform surface. Finite Elem Anal Des 43(2):168–172

    Article  Google Scholar 

  26. Purcar M, Dorochenko A, Bortels L, Deconinck J, Van den Bossche B (2008) Advanced CAD integrated approach for 3D electrochemical machining simulations. J Mater Process Technol 203(1):58–71

    Article  Google Scholar 

  27. Dabrowski L, Paczkowski T (2005) Computer simulation of two-dimensional electrolyte flow in electrochemical machining. Russ J Electrochem 41(1):91–98

    Article  Google Scholar 

  28. Purcar M, Bortels L, Van den Bossche B, Deconinck J (2004) 3D electrochemical machining computer simulations. J Mater Process Technol 149(1):472–478

    Article  Google Scholar 

  29. Kang M, Fu X, Yang Y (2011) Research on flow field characteristics and experiments of numerical control electrochemical machining. Adv Sci Lett 4(6–7):6–7

    Google Scholar 

  30. Kozak J (2001) Computer simulation system for electrochemical shaping. J Mater Process Technol 109(3):354–359

    Article  Google Scholar 

  31. Xu ZY, Sun L, Hu Y, Zhang J (2013) Flow field design and experimental investigation of electrochemical machining on blisk cascade passage. Int J Adv Manuf Technol 1-11

  32. Wang FY, Xu JW, Zhao JS (2011) Numerical simulation of electrochemical machining process and machined surface prediction. Key Eng Mat 458:99–105

    Article  Google Scholar 

  33. Yamamoto M (2013) Multi-physics CFD simulations in engineering. J Therm Sci 22(4):287–293

    Article  Google Scholar 

  34. Zhu D, Zhu D, Xu Z, Xu Q, Liu J (2010) Investigation on the flow field of W-shape electrolyte flow mode in electrochemical machining. J Appl Electrochem 40(3):525–532

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, L., Gan, W.M. Utilization of flow field simulations for cathode design in electrochemical machining of aerospace engine blisk channels. Int J Adv Manuf Technol 72, 1759–1766 (2014). https://doi.org/10.1007/s00170-014-5814-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-014-5814-7

Keywords

Navigation