Skip to main content
Log in

Optimization for process plans in sheet metal forming

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Determining a process plan in the early phase of the sheet metal forming process is a mandatory task for a process planner. The objective of a process planner is to find a feasible and cost optimal process plan which, in particular, optimizes the assignment of processing elements to processing steps of the production process. We propose to find such an assignment in an automatic way for all the hole features by splitting the entire task into three subsequent steps. At each step, the combinatorial optimization problem is modeled as a bin packing problem with conflicts, and heuristically solved by a specifically designed ant colony optimizer. It is ensured that, at each step, the process plan is feasible while minimizing the tooling costs. In our computational results, we compare our approach to the existing greedy heuristic when computing a process plan for five different practice-relevant sheet metal parts, and show that we can save up to 50 % of the entire tooling costs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Emrich A, Compensation of springback based on the formability analyses results, in: The Press Plant facing shifting requirements, volume 8 of Automotive Circle International Conference, p. 160

  2. Schrempp G, Werteveränderung durch modifizierte Allokationen auf der Prozesskette Blech, Vortrag, 2007. Available online at http://logistics.de/downloads/4f/2a/i_file_45370/ allokation-prozesskette-dlk-2007-schrempp-pwo.pdf; visited on April 24th 2012

  3. Schuh G, Boos W (2004) Werkzeugfunktionen als Kalkulationsbasis, Plastverarbeiter 6

  4. Kubli W, Prabhakar V (2008) Digital process planning for automotive body panels, in: Proceedings of the 7th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes (Numisheet)

  5. Pietsch M, Wagner S, Computer aided method for an associative process layout generation, in: Proceedings of the 7th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes (Numisheet) 2008

  6. Li W, Ong S, Nee A (2003) A hybrid method to recognizing interacting machining features. International Journal of Production Research 41:1887–1908

    Article  MATH  Google Scholar 

  7. Owodunni O, Hinduja S, Systematic development and evaluation of composite methods for recognition of three-dimensional subtractive features, in: Proceedings of Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, volume 219, pp. 871–890

  8. Rahmani K, Arezoo B (2007) A hybrid hint-based and graph-based framework for recognition of interacting milling features. Computers in Industry 58:304–312

    Article  Google Scholar 

  9. Verma A, Rajotia S (2009) Hybrid machining feature recognition system. International Journal of Manufacturing Research 4:343–361

    Article  Google Scholar 

  10. Nasr EA, Kamrani AK (2007) Computer-based design and manufacturing: an information-based approach. Springer, Berlin

    Google Scholar 

  11. Sunil V, Pande S (2008) Automatic recognition of features from freeform surface cad models. Computer-Aided Design 40:502–517

    Article  Google Scholar 

  12. Zhang C, Zhou X, Li C (2009) Automatic recognition of intersecting features of freeform sheet metal parts. Journal of Zhejiang University Science A 10:1439–1449

    Article  MATH  Google Scholar 

  13. Danzberg J (2001) Einsatz hierarchischer parametrisierter Konstruktionsmetodik zur Planung und Optimierung von Karosserieblechteilen, Ph.D. thesis, ETH Zurich

  14. Hillmann M, Kubli W (2005) Bestimmung von Prozessoperationen zur Beschreibung von Umformprozessen an einem Umformteil

  15. Ehrlenspiel K, Kiewert A, Lindeman U (2005) Kostengünstig Entwickeln und Konstruieren, Springer Verlag Berlin Heidelberg

  16. Fischer J (2008) Kostenbewusstes Konstruieren, Springer Verlag Berlin Heidelberg

  17. Pahl G, Beitz W, Feldhusen J, Grote KH (2007) Konstruktionslehre, Springer Verlag Berlin Heidelberg

  18. Verlinden B, Duflou JR, Collins P, Cattrysse D (2008) Cost estimation for sheet metal parts using multiple regression and artificial neural networks: a case study. International Journal of Production Economics 111(2):484–492

    Article  Google Scholar 

  19. A. Wittmann, A.-W. Scheer (2000) FIT Featurebasiertes Integriertes Toleranzinformationssystem, Technical Report, Universitat Saarbrücken, Institut für Wirtschaftsinformatik

  20. Tangelder JW, Veltkamp RC (2008) A survey of content based 3d shape retrieval methods. Multimedia Tools and Applications 39:441–471

    Article  Google Scholar 

  21. Romanowski RNCJ (2005) On comparing bills of materials: a similarity/distance measure for unordered trees. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans 35:249–260

    Article  Google Scholar 

  22. Karadgi S, Müller U, Metz D, Schafer W, Grauer M Cost estimation of automotive sheet metal components using knowledge-based engineering and case-based reasoning, in: IEEE International Conference on Industrial Engineering and Engineering Management, pp. 1518–1522.

  23. Grauer M, Metz D, Müller U, Karadgi S, Sch¨afer W, Barth T (2010) Towards an integrated virtual value creation chain in sheet metal forming. Lecture Notes in Business Information Processing 46:186–197

    Article  Google Scholar 

  24. Martello S, Toth P (1990) Knapsack problems: algorithms and computer implementations. Wiley, Chichester

    MATH  Google Scholar 

  25. Wächer G, Häusner H, Schumann H (2007) An improved typology of cutting and packing problems. European Journal of Operational Research 183:1109–1130

    Article  Google Scholar 

  26. Alves C, de Carvalho JMV (2008) A stabilized branch-and-price-and-cut algorithm for the multiple length cutting stock problem. Computers & OR 35:1315–1328

    Article  MATH  Google Scholar 

  27. Alvim ACF, Ribeiro CC, Glover F, Aloise DJ (2004) A hybrid improvement heuristic for the one-dimensional bin packing problem. Journal of Heuristics 10:205–229

    Article  Google Scholar 

  28. Anily S, Bramel J, Simchi-Levi D (1994) Worst-case analysis of heuristics for the bin packing problem with general cost structures. Oper Res 42:287–298

    Article  MATH  Google Scholar 

  29. Belov G (2003) Problems, models and algorithms in one and twodimensional cutting, Ph.D. thesis, Technical University of Dresden

  30. Coffman J, Garey EG, Johnson DS et al (1997) Approximation algorithms for bin packing: a survey. In: Approximation algorithms for NP-hard problems. PWS, Boston, pp 46–93

    Google Scholar 

  31. Fekete SP, Schepers J New classes of lower bounds for bin packing problems, in: IPCO: 6th Integer Programming and Combinatorial Optimization Conference, volume 1412 of Lecture Notes in Computer Science, pp. 257–270

  32. Gendreau M, Laporte G, Semet F (2004) Heuristics and lower bounds for the bin packing problem with conflicts. Computers & Operations Research 31:347–358

    Article  MATH  MathSciNet  Google Scholar 

  33. Gent I (1998) Heuristic solution of open bin packing problems. Journal of Heuristics 3:299–304

    Article  MATH  Google Scholar 

  34. Gupta JND, Ho JC (1999) A new heuristic algorithm for the one dimensional bin-packing problem. Production Planning & Control 6:598–603

    Article  Google Scholar 

  35. Kao C-Y, Lin F-T (1992) A stochastic approach for the one-dimensional bin-packing problems. IEEE International Conference on Systems, Man and Cybernetics 2:1545–1551

    Google Scholar 

  36. Scholl A, Klein R, Jürgens C (1997) Bison: a fast hybrid procedure for exactly solving the one-dimensional bin packing problem. Computers & OR 24:627–645

    Article  MATH  Google Scholar 

  37. Blum C, Roli A (2003) Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Computing Surveys 35:268–308

    Article  Google Scholar 

  38. Loh K, Golden BL, Wasil EA (2008) Solving the one-dimensional bin packing problem with a weight annealing heuristic. Computers & OR 35:2283–2291

    Article  MATH  MathSciNet  Google Scholar 

  39. Brugger B, Doerner K, Hartl RF, Reimann M, Antpacking—an ant colony optimization approach for the one-dimensional bin packing problem, in: EvoCOP, pp. 41–50.

  40. Levine J, Ducatelle F (2004) Ant colony optimisation and local search for bin packing and cutting stock problems. Journal of the Operational Research Society 55:705–716

    Article  MATH  Google Scholar 

  41. Fleszar K, Hindi KS (2002) New heuristics for one-dimensional bin-packing. Computers & OR 29:821–839

    Article  MATH  Google Scholar 

  42. Mladenovic N, Hansen P (1997) Variable neighborhood search. Computers & OR 24:1097–1100

    Article  MATH  MathSciNet  Google Scholar 

  43. Falkenauer E (1996) A hybrid grouping genetic algorithm for bin packing. Journal of Heuristics 2:5–30

    Article  Google Scholar 

  44. Falkenauer E (1994) A new representation and operators for genetic algorithms applied to grouping problems. Evol Comput 2:123–144

    Article  Google Scholar 

  45. Iima H, Yakawa T (2003) A new design of genetic algorithm for bin packing, in: Evolutionary Computation, CEC’03. The 2003 Congress on, volume 2, pp. 1044–1049

  46. Jing X, Zhou X, Xu Y (2006) A hybrid genetic algorithm for bin packing problem based on item sequencing. Journal of Information and Computing Science 1:61–64

    Google Scholar 

  47. Khüri S, Schütz M, Heitkotter J (1995) Evolutionary heuristics for the bin packing problem. In: Pearson DW, Steele NC, Albrecht RF (eds) Artificial Neural Nets and Genetic Algorithms. Proceedings of the International Conference in Ales, France, pp 285–288

    Chapter  Google Scholar 

  48. Reeves C (1996) Hybrid genetic algorithms for bin-packing and related problems. Annals of Operations Research 63:371–396

    Article  MATH  Google Scholar 

  49. Rohlfshagen P, Bullinaria JA, A genetic algorithm with exon shuffling crossover for hard bin packing problems, in: GECCO, pp. 1365–1371.

  50. Singh A, Gupta A (2007) Two heuristics for the one-dimensional bin-packing problem. OR Spectrum 29:765–781

    Article  MATH  MathSciNet  Google Scholar 

  51. Stawowy A (2008) Evolutionary based heuristic for bin packing problem. Computers & Industrial Engineering 55:465–474

    Article  Google Scholar 

  52. Sathe M, Schenk O, Burkhart H (2009) Solving bi-objective many-constraint bin packing problems in automobile sheet metal forming processes. In: Ehrgott M, Fonseca C, Gandibleux X, Hao J-K, Sevaux M (eds) Evolutionary Multi-Criterion Optimization, volume 5467 of Lecture Notes in Computer Science. Springer Berlin, Heidelberg, pp 246–260

    Google Scholar 

  53. D. S. Liu, K. C. Tan, C. K. Goh, W. K. Ho, On solving multiobjective bin packing problems using particle swarm optimization, in: G. G. Y. et al. (Ed.), Proceedings of the 2006 I.E. Congress on Evolutionary Computation, IEEE Press, Vancouver, BC, Canada, 2006, pp. 2095–2102

  54. Geiger MJ, Bin packing under multiple objectives a heuristic approximation approach, in: The Fourth International Conference on Evolutionary Multi-Criterion Optimization: Late Breaking Papers, Matsushima, Japan, pp.53–56.

  55. Lara O, Labrador M (2010) A multiobjective ant colony-based optimization algorithm for the bin packing problem with load balancing, in: Evolutionary Computation (CEC), IEEE Congress on, pp. 1–8.

  56. Dorigo M, Birattari M, Stützle T (2006) Ant colony optimization. Computational Intelligence Magazine, IEEE 1:28–39

    Article  Google Scholar 

  57. Dorigo M, Blum C (2005) Ant colony optimization theory: a survey. Theor Comput Sci 344:243–278

    Article  MATH  MathSciNet  Google Scholar 

  58. Dorigo M, Stützle T (2004) Ant colony optimization. MIT Press, Cambridge, USA

    Book  MATH  Google Scholar 

  59. Stützle T, Hoos H (2000) Max-min ant system. Future Gener Comput Syst 16:889–914

    Article  Google Scholar 

  60. AutoForm Development GmbH, CostCalculator Reference Manual, 2009

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silke Wagner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagner, S., Sathe, M. & Schenk, O. Optimization for process plans in sheet metal forming. Int J Adv Manuf Technol 71, 973–982 (2014). https://doi.org/10.1007/s00170-013-5515-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-013-5515-7

Keywords

Navigation