Skip to main content
Log in

PVDF sensor-based monitoring of milling torque

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

A sensor module that incorporates a thin film polyvinylidene fluoride (PVDF) piezoelectric strain sensor rosette as well as data logging and wireless transmitting electronics has been designed and implemented for monitoring dynamic cutting torque in the end milling process—a material removal process widely used in the aerospace industry. The dynamic shear strain produced in the rotating tool during the cutting process is picked up by the PVDF sensor rosette attached to the tool shank and can be either logged into the onboard micro secure digital card or wirelessly transmitted to a nearby base station. The PVDF sensor rosette is largely insensitive to the pyroelectric effect of the PVDF sensor and the other strain components such as bending strain and thermal strain. A physics-based model is used to relate the measured PVDF sensor signal to the dynamic milling torque. The proposed method is experimentally validated using reference milling torque signals computed from cutting force signals measured using a platform-type piezoelectric force dynamometer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tlusty J, Andrews GC (1983) A critical review of sensors for unmanned machining. CIRP Ann Manuf Technol 32(2):563–572. doi:10.1016/s0007-8506(07)60184-x

    Article  Google Scholar 

  2. YaldIz S, Ünsaçar F, Saglam H, IsIk H (2007) Design, development and testing of a four-component milling dynamometer for the measurement of cutting force and torque. Mech Syst Signal Process 21(3):1499–1511. doi:10.1016/j.ymssp.2006.06.005

    Article  Google Scholar 

  3. Kistler (2012) Kistler 9123C. http://www.kistler.com/us_en-us/13_Productfinder/app.9123C_BP/Product-Finder.html. Accessed 1 December 2012

  4. Suprock CA, Nichols JS (2009) A low cost wireless high bandwidth transmitter for sensor-integrated metal cutting tools and process monitoring. Int J Mechatron Manuf Syst 2(4):441–454

    Google Scholar 

  5. Smith DA, Smith S, Tlusty J (1998) High performance milling torque sensor. J Manuf Sci Eng 120(2):504–514

    Article  Google Scholar 

  6. Dini G, Tognazzi F (2007) Tool condition monitoring in end milling using a torque-based sensorized toolholder. Proc Inst Mech Eng B J Eng Manuf 221(1):11–23. doi:10.1243/09544054jem559

    Article  Google Scholar 

  7. Altintas Y, Stepan G, Merdol D, Dombovari Z (2008) Chatter stability of milling in frequency and discrete time domain. CIRP J Manuf Sci Technol 1(1):35–44. doi:10.1016/j.cirpj.2008.06.003

    Article  Google Scholar 

  8. Stepan G, Dombovari Z, Muñoa J (2011) Identification of cutting force characteristics based on chatter experiments. CIRP Ann Manuf Technol 60(1):113–116. doi:10.1016/j.cirp.2011.03.100

    Article  Google Scholar 

  9. Kuljianic E, Sortino M, Totis G (2008) Multisensor approaches for chatter detection in milling. J Sound Vib 312(4–5):672–693

    Article  Google Scholar 

  10. Ma L, Melkote S, Morehouse J, Castle J, Fonda J, Johnson M (2012) Thin-film PVDF sensor based monitoring of cutting forces in peripheral end milling. J Dyn Syst Meas Control 134(5):051014

    Article  Google Scholar 

  11. Ma L, Melkote S, Morehouse J, Castle J, Fonda J, Johnson M (2012) Design of thin-film PVDF sensor rosettes for isolation of various strain components. J Intell Mater Syst Struct 23(9):1119–1130

    Article  Google Scholar 

  12. IEEE Standard on Piezoelectricity (1988). ANSI/IEEE Std 176–1987:0_1

  13. Karki J (2000) Signal Conditioning Piezoelectric Sensors. http://focus.ti.com/lit/an/sloa033a/sloa033a.pdf. Accessed 15 March 2010

  14. Oppenheim AV, Schafer RW, Buck JR (1999) Discrete-time signal processing. second edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  15. Kline WA, DeVor RE, Lindberg JR (1982) The prediction of cutting forces in end milling with application to cornering cuts. Int J Mach Tool Design Res 22(1):7–22. doi:10.1016/0020-7357(82)90016-6

    Article  Google Scholar 

  16. Wang J-JJ, Liang SY (1996) Chip load kinematics in milling with radial cutter runout. J Eng Ind 118(1):111–116

    Article  Google Scholar 

  17. Insperger T, Stépán G, Bayly PV, Mann BP (2003) Multiple chatter frequencies in milling processes. J Sound Vib 262(2):333–345. doi:10.1016/s0022-460x(02)01131-8

    Article  Google Scholar 

  18. Delio T, Tlusty J, Smith S (1992) Use of audio signals for chatter detection and control. J Eng Ind 114(2):146–157

    Google Scholar 

  19. BL-21994-000. (2006). http://www.knowles.com/search/prods_pdf/BL-21994-000.pdf. Accessed 1 August 2012

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shreyes N. Melkote.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, L., Melkote, S.N. & Castle, J.B. PVDF sensor-based monitoring of milling torque. Int J Adv Manuf Technol 70, 1603–1614 (2014). https://doi.org/10.1007/s00170-013-5410-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-013-5410-2

Keywords

Navigation