Skip to main content
Log in

Electrical discharge precision machining parameters optimization investigation on S-03 special stainless steel

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

S-03 is a novel special stainless steel, which is widely used in precision aerospace parts and electrical discharge machining technology has the merit of high-accuracy machining. This paper aims to combine gray relational analysis and orthogonal experimental to optimize electrical discharge high-accuracy machining parameters. The four process parameters of gap voltage, peak discharge current, pulse width, and pulse interval are required to optimize in the fewest experiment times. The material removal rate and surface roughness are the objective parameters. The experiment were carried out based on Taguchi L9 orthogonal array, then we carried out the gray relational analysis to optimize the multi-objective machining parameter, finally, we verified the results through a confirmation experiment. The sequence of machining parameters from primary to secondary are as follows: discharge current 7A, pulse interval 100 μs, pulse width 50 μs, and gap voltage 70 V. Using the above machining parameters, we can obtain good surface roughness Ra1.7 μm, and material removal rate 13.3 mm3/min. The machined work piece almost has no surface modification layer. The results show that combining orthogonal experiment and gray relational analysis can further optimize machining parameters, the material removal rate increased by 23.8 %, and the surface roughness almost has no change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lin GM, Peng LX (2012) Electrical discharge machining technology and its latest application. Emerg Mater Mech Appl 487:515–519

    Article  Google Scholar 

  2. Pandey A, Singh S (2010) Current research trends in variants of electrical discharge machining: a review. Int J Eng Sci Technol 2(6):2172–2191

    Google Scholar 

  3. Leão FN, Pashby IR (2004) A review on the use of environmentally friendly dielectric fluids in electrical discharge machining. J Mater Process Technol 149(1–3):341–346

    Article  Google Scholar 

  4. Mohd Abbas N, Solomon DG, Fuad Bahari M (2007) A review on current research trends in electrical discharge machining (EDM). Int J Mach Tools Manuf 47(7–8):1214–1228

    Article  Google Scholar 

  5. Singh S, Bhardwaj A (2011) Review to EDM by using water and powder-mixed dielectric fluid. J Miner Mater Character Eng 10(2):199–230

    Google Scholar 

  6. Murray JW, Fay MW, Kunieda M, Clare AT (2013) TEM study on the electrical discharge machined surface of single-crystal silicon. J Mater Process Technol 213:801–809

    Article  Google Scholar 

  7. Abdulkareem S, Khan AA, Konneh M (2010) Cooling effect on electrode and process parameters in EDM. Mater Manuf Process 25(6):462–466

    Article  Google Scholar 

  8. Srivastava V, Pandey PM (2012) Performance evaluation of electrical discharge machining (EDM) process using cryogenically cooled electrode. Mater Manuf Process 27(6):683–688

    Article  Google Scholar 

  9. Jafferson JM, Hariharan P (2013) Machining performance of cryogenically treated electrodes in microelectric discharge machining: a comparative experimental study. Mater Manuf Process 28(4):397–402

    Article  Google Scholar 

  10. Patel KM, Pandey PM, Rao PV (2008) Understanding the role of weight percentage and size of silicon carbide particulate reinforcement on electro-discharge machining of aluminium-based composites. Mater Manuf Process 23(7):665–673

    Article  Google Scholar 

  11. Beri N, Maheshwari S, Sharma C, Kumar A (2010) Technological advancement in electrical discharge machining with powder metallurgy processed electrodes: a review. Mater Manuf Process 25(10):1186–1197

    Article  Google Scholar 

  12. Muthuramalingam T, Mohan B (2013) Influence of discharge current pulse on machinability in electrical discharge machining. Mater Manuf Process 28(4):375–380

    Article  Google Scholar 

  13. Guu YH, Chou CY, Chiou ST (2005) Study of the effect of machining parameters on the machining characteristics in electrical discharge machining of Fe-Mn-Al alloy. Mater Manuf Process 20(6):905–916

    Article  Google Scholar 

  14. Meena VK, Azad MS (2012) Grey relational analysis of micro-EDM machining of Ti-6Al-4V alloy. Mater Manuf Process 27(9):973–977

    Article  Google Scholar 

  15. Jabbaripour B, Sadeghi MH, Faridvand S, Shabgard MR (2012) Investigating the effects of EDM parameters on surface integrity, MRR and TWR in machining of Ti–6Al–4V. Machining Sci Technol 16(3):419–444

    Article  Google Scholar 

  16. Sivapirakasam SP, Mathew J, Surianarayanan M (2011) Multi-attribute decision making for green electrical discharge machining. Expert Systems Appl 38(7):8370–8374

    Article  Google Scholar 

  17. Panda MC, Yadava V (2012) Intelligent modeling and multiobjective optimization of die sinking electrochemical spark machining process. Mater Manuf Process 27(1):10–25

    Article  Google Scholar 

  18. Mukherjee R, Chakraborty S (2012) Selection of EDM process parameters using biogeography based optimization algorithm. Mater Manuf Process 27(9):954–962

    Article  MathSciNet  Google Scholar 

  19. Agrawal SS, Yadava V (2013) Modeling and prediction of material removal rate and surface roughness in surface-electrical discharge diamond grinding process of metal matrix composites. Mater Manuf Process 28(4):381–389

    Article  Google Scholar 

  20. Murray J, Zdebski D, Clare AT (2012) Workpiece debris deposition on tool electrodes and secondary discharge phenomena in micro-EDM. J Mater Process Technol 212:1537–1547

    Article  Google Scholar 

  21. Jin Wang J, Han FZ, Cheng G, Zhao FL (2012) Debris and bubble movements during electrical discharge machining. Int J Mach Tools Manuf 58:11–18

    Article  Google Scholar 

  22. Ekmekci B, Sayar A (2013) Debris and consequences in micro electric discharge machining of micro-holes. Int J Mach Tools Manuf 65:58–67

    Article  Google Scholar 

  23. Lee S, Scarpulla MA, Bamberg E (2013) Effect of metal coating on machinability of high purity germanium using wire electrical discharge machining. J Mater Process Technol 213:811–817

    Article  Google Scholar 

  24. Gu L, Li L, Zhao WS, Rajurkar KP (2012) Electrical discharge machining of Ti6Al4V with a bundled electrode. Int J Mach Tools Manuf 53:100–106

    Article  Google Scholar 

  25. Kellens K, Dewulf W, Duflou JR (2011) Preliminary environmental assessment of electrical discharge machining. Globalized solutions for sustainability in manufacturing–Proceedings of the 18th CIRP International Conference on Life Cycle Engineering 377–382

  26. Zhang Y, Liu Y, Ji R, Cai B (2011) Study of the recast layer of a surface machined by sinking electrical discharge machining using water-in-oil emulsion as dielectric. Appl Surface Sci 257(14):5989–5997

    Article  Google Scholar 

  27. Srivastava V, Pandey PM (2013) Study of ultrasonic assisted cryogenically cooled EDM process using sintered (Cu-TiC) tooltip. J Manuf Processes 15(1):127–135

    Article  Google Scholar 

  28. Kumar S, Batra U (2012) Surface modification of die steel materials by EDM method using tungsten powder-mixed dielectric. J Manuf Processes 14(1):35–40

    Article  Google Scholar 

  29. Klocke F, Zeis M, Klink A (2012) Technological and economical capabilities of manufacturing titanium and nickel-based alloys via electrochemical machining (ECM). Key Eng Mater 504–506:1237–1242

    Article  Google Scholar 

  30. Tang L, Guo YF (2013) Experimental study of special purpose stainless steel on electrochemical machining of electrolyte composition. Mater Manuf Process 28(4):457–462

    Article  Google Scholar 

  31. Kalsi NS, Sehgal R, Sharma VS (2013) Gray-based Taguchi analysis for optimization of multi-objective machining process in turning. Int J Strateg Decis Sci 4(2):69–79

    Article  Google Scholar 

  32. Zhang Y, Liu Y, Ji R, Cai B, Shen Y (2013) Sinking EDM in water-in-oil emulsion. Int J Adv Manuf Technol 65(5–8):705–716. doi:10.1007/s00170-012-4210-4

    Article  Google Scholar 

  33. Abdulkareem S, Khan AA, Konneh M (2009) Reducing electrode wear ratio using cryogenic cooling during electrical discharge machining. Int J Adv Manuf Technol 45:1146–1151

    Article  Google Scholar 

  34. Kumar J, Khamba JS (2010) Modeling the material removal rate in ultrasonic machining of titanium using dimensional analysis. Int J Adv Manuf Technol 48(1–4):103–119

    Article  Google Scholar 

  35. Abdullah A, Shabgard MR (2008) Effect of ultrasonic vibration of tool on electrical discharge machining of cemented-tungestan carbide (WC-Co). Int J Adv Manuf Technol 38:1137–1147

    Article  Google Scholar 

  36. Kibria G, Sarkar BR, Pradhan BB, Bhattacharyya B (2010) Comparative study of different dielectrics for micro-EDM performance during microhole machining of Ti-6Al-4V alloy. Int J Adv Manuf Technol 48(5–8):557–570

    Article  Google Scholar 

  37. Teimouri R, Baseri H (2013) Experimental study of rotary magnetic field-assisted dry EDM with ultrasonic vibration of workpiece. Int J Adv Manuf Technol 67(5–8):1371–1384

    Article  Google Scholar 

  38. Chattopadhyay KD, Satangi PS, Verma S, Sherma PC (2008) Analysis of rotary electrical discharge machining characteristics in reversal magnetic field for copper-en8 steel system. Int J Adv Manuf Technol 38:925–937

    Article  Google Scholar 

  39. Manivannan S, Devi SP, Arumugam R, Sudharsan NM (2011) Multi-objective optimization of flat plate heat sink using Taguchi-based grey relational analysis. Int J Adv Manuf Technol 52(5–8):739–749

    Article  Google Scholar 

  40. Kao JY, Tsao CC, Wang SS, Hsu CY (2010) Optimization of the EDM parameters on machining Ti-6Al-4V with multiple quality characteristics. Int J Adv Manuf Technol 47(1–4):395–402

    Article  Google Scholar 

  41. Lin YC, Lee HS (2009) Optimization of machining parameters using magnetic-force-assisted EDM based on gray relational analysis. Int J Adv Manuf Technol 42(11–12):1052–1064

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, L., Guo, Y.F. Electrical discharge precision machining parameters optimization investigation on S-03 special stainless steel. Int J Adv Manuf Technol 70, 1369–1376 (2014). https://doi.org/10.1007/s00170-013-5380-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-013-5380-4

Keywords

Navigation