Skip to main content
Log in

Dimensional management for aerospace assemblies: framework implementation with case-based scenarios for simulation and measurement of in-process assembly variations

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Tolerances within an assembly are defined during the setting of engineering specifications in the design phase. However, during assembly process execution, certain assembly variations arise from the individual components, manufacturing imperfections, material compliance, the means by which they are fastened and the assembly sequence used. The implementation work reported in this article utilises in-process assembly measurement information for predicting dimensional variation of the aero structure assembly process. A framework is exploited in the case study for predicting the dimensional influence of (1) designed tolerances, (2) designed assembly processes and (3) component and sub-assembly level measurement data for revising the assembly sequence if any concessions were issued on manufactured components. Considerable learnings are achieved while managing dimensional variation of in-process aerospace assembly structure. Dimensional variation simulation is found to be overestimating variation spread even after considering compliance of non-rigid components. Thus, in-process measurement data (component and sub-assembly level) has to be integrated in the variation analysis in order to reduce variation spectrum. Case-based scenarios are discussed where design and measurement data can be utilised for estimating dimensional variation of the in-process assembly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Maropoulos PG, Vichare P, Martin O, Muelaner J, Summers MD, Kayani A (2011) Early design verification of complex assembly variability using a hybrid—model based and physical testing—methodology. CIRP Ann Manuf Technol 60(1):207–210. doi:10.1016/j.cirp.2011.03.097

    Article  Google Scholar 

  2. Weber J (2009) Vehicle development projects—an overview. Auto Dev Proc. doi:10.1007/978-3-642-01253-2_1

    Article  Google Scholar 

  3. Petroni G, Verbano C (2000) The development of a technology transfer strategy in the aerospace industry: the case of the Italian Space Agency. Technovation 20(7):345–351. doi:10.1016/s0166-4972(99)00149-2

    Article  Google Scholar 

  4. Naing S, Burley G, Odi R, Williamson A, Corbett J (2000) Design for tooling to enable jigless assembly - an integrated methodology for jigless assembly. SAE Technical Paper: paper number: 2000-2001-1765

  5. Butterfield J, McClean A, Yin Y, Curran R, Burke R, Welch B, Devenny C (2008) An integrated lean approach to aerospace assembly jig and work cell design using digital manufacturing. In: Curran R, Chou S-Y, Trappey A (eds). Collaborative product and service life cycle management for a sustainable world. Advanced concurrent engineering. Springer: London, pp 531–540. doi:10.1007/978-1-84800-972-1_50

  6. Moos S, Vezzetti E (2012) Compliant assembly tolerance analysis: guidelines to formalize the resistance spot welding plasticity effects. AMT 61(5–8):503–518. doi:10.1007/s00170-011-3729-0

    Article  Google Scholar 

  7. Lin EE, Zhang HC (2001) Theoretical tolerance stackup analysis based on tolerance zone analysis. AMT 17(4):257–262. doi:10.1007/s001700170178

    Article  Google Scholar 

  8. Hartmann J, Meeker C, Weller M, Izzard N, Smith A, Ferguson A, Ellson A (2004) Determinate assembly of tooling allows concurrent design of airbus wings and major assembly fixtures. SAE Technical Paper: paper number: 2004-2001-2832

  9. Jamshidi J, Kayani A, Iravani P, Maropoulos PG, Summers MD (2010) Manufacturing and assembly automation by integrated metrology systems for aircraft wing fabrication. Proc Inst Mech Eng B J Eng 224(B1):25–36. doi:10.1243/09544054JEM1280

    Article  Google Scholar 

  10. Zhou YB, Li YG, Wang W (2011) A feature-based fixture design methodology for the manufacturing of aircraft structural parts. Robot Comput Integr Manuf 27(6):986–993. doi:10.1016/j.rcim.2011.05.002

    Article  Google Scholar 

  11. Hu SJ, Camelio J (2006) Modeling and control of compliant assembly systems. CIRP Ann Manuf Technol 55(1):19–22

    Article  Google Scholar 

  12. Saadat M, Cretin L, Sim R, Najafi F (2009) Deformation analysis of large aerospace components during assembly. AMT 41(1–2):145–155. doi:10.1007/s00170-008-1464-y

    Article  Google Scholar 

  13. Butterfield J, Crosby S, Curran R, Price M, Armstrong CG, Raghunathan S, McAleenan D, Gibson C (2007) Optimization of aircraft fuselage assembly process using digital manufacturing. J Comput Inf Sci Eng 7(3):269–275. doi:10.1115/1.2753879

    Article  Google Scholar 

  14. Polini W, Marrocu M, D'Ambrosio L (2007) Tolerance analysis of free-form surfaces in composite material. J Comput Inf Sci Eng 7(1):31–43. doi:10.1115/1.2424243

    Article  Google Scholar 

  15. Brujic D, Ristic M, Mattone M, Maggiore P, Fernández-Castañeda J (2005) Progress report on new modelling techniques. VIVACE 2.3/5/IMPERIAL/T/05503-1.1.

  16. Padhi GS, McCarthy MA, McCarthy CT (2002) BOLJAT: a tool for designing composite bolted joints using three-dimensional finite element analysis. Compos A: Appl Sci Manuf 33(11):1573–1584. doi:10.1016/s1359-835x(02)00113-6

    Article  Google Scholar 

  17. Saadat M (2011) Challenges in the assembly of large aerospace components. In: Fathi M, Holland A, Ansari F, Weber C (eds) Integrated systems, design and technology 2010. Springer, Berlin. doi:10.1007/978-3-642-17384-4_4

    Google Scholar 

  18. Jayaweera N, Webb P, Johnson C (2010) Measurement assisted robotic assembly of fabricated aero-engine components. Assem Autom 30(1):56–65. doi:10.1108/01445151011016073

    Article  Google Scholar 

  19. Saadat M, Cretin L (2002) Measurement systems for large aerospace components. Sens Rev 22(3):199–206

    Article  Google Scholar 

  20. Peggs GN, Maropoulos PG, Hughes EB, Forbes AB, Robson S, Ziebart M, Muralikrishnan B (2009) Recent developments in large-scale dimensional metrology. Proc Inst Mech Eng B J Eng 223(6):571–595. doi:10.1243/09544054jem1284

    Article  Google Scholar 

  21. Jayaweera N, Webb P (2007) Adaptive robotic assembly of compliant aero-structure components. Robot Comput Integr Manuf 23(2):180–194. doi:10.1016/j.rcim.2006.04.002

    Article  Google Scholar 

  22. Muelaner JE, Cai B, Maropoulos PG (2010) Large-volume metrology instrument selection and measurability analysis. Proc Inst Mech Eng B J Eng 224(B6):853–868. doi:10.1243/09544054jem1676

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parag Vichare.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vichare, P., Martin, O. & Jamshidi, J. Dimensional management for aerospace assemblies: framework implementation with case-based scenarios for simulation and measurement of in-process assembly variations. Int J Adv Manuf Technol 70, 215–225 (2014). https://doi.org/10.1007/s00170-013-5262-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-013-5262-9

Keywords

Navigation