Skip to main content
Log in

Adaptive fuzzy sliding mode control for a robotic aircraft flexible tooling system

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

A robotic aircraft flexible tooling system is proposed in this paper, of which high-precision synchronous motion control of dual robots is a key part. In order to alleviate the effects of the mechanical coupling over synchronous and tracking errors of the two robots, a cross-coupling scheme based on an adaptive fuzzy sliding mode controller (AFSMC) is developed. First, the mechanical coupling model is established by dynamics analysis of the dual-robot driving system. Then, a novel cross-coupling error is proposed, which combines both the position and speed tracking and synchronous errors of dual robots. Moreover, the cross-coupling control scheme based on AFSMC is presented. For the proposed AFSMC, a fuzzy logic controller is adopted to generate the hitting control signal, and the output gain of the sliding mode control is tuned online by a supervisory fuzzy system. Finally, the preferable performance of the proposed AFSMC cross-coupling approach is verified by the simulation results compared with the conventional proportional-integral-derivative control and SMC cross-coupling controls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lu JB, Zhou K (2011) Multi-point location theory, method, and application for flexible tooling system in aircraft manufacturing. Int J Adv Manuf Technol 54:729–736. doi:10.1007/s00170-010-2974-y

    Article  Google Scholar 

  2. Rodriguez AA, Nijimeijer H (2004) Mutual synchronization of robots via estimated state feedback: a cooperative approach. IEEE Trans Control Syst Technol 12:542–554. doi:10.1109/TCST.2004.825065

    Article  Google Scholar 

  3. Yan MT, Lee MH, Yen PL (2005) Theory and application of a combined self-tuning adaptive control and cross coupling control in a retrofit milling machine. IEEE/ASME Trans Mechatronics 15:193–211. doi:10.1016/j.mechatronics.2004.07.011

    Google Scholar 

  4. Chien YL, Tung PC, Chu WH (2006) Adaptive fuzzy sliding mode control for an automatic arc welding system. Int J Adv Manuf Technol 29:481–489. doi:10.1007/s00170-005-2539-7

    Google Scholar 

  5. Sun D (2003) Position synchronization of multiple motion axes with adaptive coupling control. Automatica 39:997–1005. doi:10.1016/S0005-1098(03)00037-2

    Article  MATH  Google Scholar 

  6. Sun D, Feng GL, Dong CM (2005) Orientation control of a differential mobile robot through wheel synchronization. IEEE/AMSE Trans Mechatronics 10:345–351. doi:10.1109/TMECH.2005.848292

    Article  Google Scholar 

  7. Zhao D, Li S, Gao F, Zhu Q (2009) Robust adaptive terminal sliding mode-based synchronized position control for multiple motion axed systems. IET Control Theory Appl 3:136–150. doi:10.1049/iet-cta:20070272

    Article  MathSciNet  Google Scholar 

  8. Ahmed FA, Elsayed AS, Wael ME (2011) Adaptive fuzzy sliding mode control using supervisory fuzzy control for 3 DOF planar robot manipulators. Appl Soft Comput 11:4943–4953. doi:10.1016/j.asoc.2011.06.005

    Article  Google Scholar 

  9. Utkin VI (1993) Sliding mode control design principles and applications to electric drives. IEEE Trans Ind Electron 40:23–26. doi:10.1109/41.184818

    Article  Google Scholar 

  10. Chiu SL, Shyu KK (1998) Novel sliding mode controller for synchronous motor drive. IEEE Trans Aerosp Electr Syst 34:532–542. doi:10.1109/7.670334

    Article  Google Scholar 

  11. Wai RJ (2000) Adaptive sliding-mode control for induction servo motor drive. Proc Inst Elect Eng Electric Power Appl 147:553–562. doi:10.1049/ip-epa:20000628

    Article  Google Scholar 

  12. Liaw CM, Lin FJ (1995) Position control with fuzzy adaptation for induction servomotor drive. Proc Inst Elect Eng Electric Power Appl 142:397–404. doi:10.1049/ip-epa:19952209

    Article  Google Scholar 

  13. Wong LK, Leung FHF, Tam PKS (2001) A fuzzy sliding controller for nonlinear systems. IEEE Trans Ind Electron 48:32–37. doi:10.1109/41.904545

    Article  Google Scholar 

  14. Ha QP (1996) Robust sliding mode controller with fuzzy tuning. Electron Lett 32:1626–1628. doi:10.1049/el:19961085

    Article  Google Scholar 

  15. Lin FJ, Chiu SL (1998) Adaptive fuzzy sliding-mode control for PM synchronous servo motor drives. Proc Inst Elect Eng Contr Theory Appl 145(1):63–72. doi:10.1049/ip-cta:19981683

    Article  MATH  Google Scholar 

  16. Choi SB, Park DW, Jayasuriya SA (1994) A time-varying sliding surface for fast and robust tracking control of second-order uncertain systems. Automatica 30:899–904. doi:10.1016/0005-1098(94)90180-5

    Article  MathSciNet  MATH  Google Scholar 

  17. Eker I (2006) Sliding mode control with PID sliding surface and experimental application to an electromechanical plant. ISA Trans 45:109–118. doi:10.1016/S0019-0578(07)60070-6

    Article  Google Scholar 

  18. Lu YS, Chen JS (1994) A self-organizing fuzzy sliding-mode controller design for a class of nonlinear servo systems. IEEE Trans Ind Electron 41:492–502. doi:10.1109/41.315267

    Article  Google Scholar 

  19. Ha QP, Rye DC, Durrant-Whyte HF (1999) Fuzzy moving sliding mode control with application to robotic manipulators. Automatica 35:607–616. doi:10.1016/S0005-1098(98)00169-1

    Article  MATH  Google Scholar 

  20. Wai RJ (2007) Fuzzy sliding-mode control using adaptive tuning technique. IEEE Trans Ind Electron 54(1):586–594. doi:10.1109/TIE.2006.888807

    Article  Google Scholar 

  21. Zeinali M, Notash L (2010) Adaptive sliding mode control with uncertainty estimator for robot manipulators. Mech Mach Theory 45:80–90. doi:10.1016/j.mechmachtheory.2009.08.003

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhu M, Li Y (2010) Decentralized adaptive fuzzy sliding mode control for reconfigurable modular manipulators. Int J Nonlinear Control 20:472–488. doi:10.1002/rnc.1444

    Google Scholar 

  23. Chen HY, Huang SJ (2004) Adaptive fuzzy sliding-mode control for the Ti6Al4V laser alloying process. Int J Adv Manuf Technol 24:667–674. doi:10.1007/s00170-003-1742-7

    Article  Google Scholar 

  24. Chen HM, Renn JC, Su JP (2005) Sliding mode control with varying boundary layers for an electro-hydraulic position servo system. Int J Adv Manuf Technol 26:117–123. doi:10.1007/s00170-004-2145-0

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lixin Zhan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhan, L., Zhou, K. Adaptive fuzzy sliding mode control for a robotic aircraft flexible tooling system. Int J Adv Manuf Technol 69, 1469–1481 (2013). https://doi.org/10.1007/s00170-013-5123-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-013-5123-6

Keywords

Navigation