Skip to main content

Advertisement

Log in

Functional graded scaffold of HDPE/HA prepared by selective laser sintering: microstructure and mechanical properties

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This paper presents a study on the effect of hydroxyapatite (HA) content on the microstructure and mechanical properties of high-density polyethylene (HDPE)/HA composites and the fabrication of functional graded scaffold of HDPE/HA by selective laser sintering (SLS). The microstructure of the sintered composite scaffolds had interconnected pores with diameters of 30–180 μm and porosity of 45–48 %. The HDPE/HA composite scaffolds had a flexural modulus of 36–161 MPa and ultimate strength of 4.5–33 MPa. The maximum loss modulus peak tended toward lower temperature values for HDPE/HA composites with 10 and 20 % of HA content, indicating that the αχ relaxation was slightly affected by higher quantities of HA. The HA particles reinforced the matrix and minimized the plastic and definitive deformation under the test conditions. HDPE/HA functional graded scaffold fabricated using SLS with controlled microstructure and properties showed considerable potential for biomedical applications, being suitable for bone and cartilage tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mercuri LG (1998) Alloplastic temporomandibular joint reconstruction. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 85(6):631–7

    Article  Google Scholar 

  2. Langer R, Tirrell DA (2004) Designing materials for biology and medicine. Nature 428(6982):487–92

    Article  Google Scholar 

  3. Agrawal CM, Ray RB (2001) J Biomed Mater Res 55(2):141–50

    Article  Google Scholar 

  4. Das S, Hollister SJ (2003) Tissue engineering scaffolds. In: Buschow KHJ, Cahn RW, Flemings MC, Ilschner B, Kramer EJ, Mahajan S (eds) Encyclopedia of materials: science and technology. Elsevier, Amsterdam

    Google Scholar 

  5. Gauvina R, Chena Y, Leed JW, Somand P, Zorlutunaa P, Nichola JW, Baea H, Chend S, Demhosseinia AK (2012) Biomaterials 33(15):3824–3834

    Article  Google Scholar 

  6. Chryssolouris G, Stavropoulos P, Tsoukantas G, Salonitis K, Stournaras A (2004) Int J Mater Prod Technol 21(4):331–348

    Article  Google Scholar 

  7. Taboas JM, Maddox RD, Krebsbach PH, Hollister SJ (2003) Biomaterials 24(1):181–94

    Article  Google Scholar 

  8. Landers R, Pfister A, Hubner U, John H, Schmelzeisen R, Mulhaupt R (2002) J Mater Sci 37(15):3107–16

    Article  Google Scholar 

  9. Das S, Hollister SJ, Flanagan C, Adewunmi A, Bark K, Chen C, Ramaswamy K, Rose D, Widjaja E (2003) Rapid Prototyp J 9(1):43–9

    Article  Google Scholar 

  10. Sachlos E, Czernuska JT (2003) Eur Cells Mater 5:29–40

    Google Scholar 

  11. Salmoria GV, Leite JL, Ahrens CH, Lago A, Pires ATN (2007) Pol Testing 26:361–368

    Article  Google Scholar 

  12. Salmoria GV, Ahrens CH, Klauss P, Paggi RA, Oliveira RG, Lago A (2007) Rapid manufacturing of PE with controlled pore gradients using SLS. Mat Research 10:214–221

    Google Scholar 

  13. Moro T, Kawaguchi H, Ishihara K, Kyomoto M, Karita T, Ito H, Nakamura K, Takatori Y (2009) Biomaterials 30(16):2995–3001

    Article  Google Scholar 

  14. Saikko V (1994) Wear 176(2):207–212

    Article  Google Scholar 

  15. Edidin AA, Kurtz SM (2000) J Arthroplast 15(3):321–331

    Article  Google Scholar 

  16. Chu CL, Wang SD (1999) J Mater 13:51–54

    Google Scholar 

  17. Akita S, Tamai N, Myoui A, Nishikawa M, Kaito T, Takaoka K, Yoshikawa H (2004) Tissue Eng 10:789–795

    Article  Google Scholar 

  18. Morita S, Furuya K, Ishihara K (1998) Biomaterials 19:1601–1606

    Article  Google Scholar 

  19. Furukawa T, Matsusue Y, Yasunaga T, Okada Y, Shikinami Y, Okuno M, Nakamura T (2000) J Biomed Mater Res 50:410–419

    Article  Google Scholar 

  20. Wang M, Joseph R, Bonfield W (1998) Biomaterials 19:2357–2366

    Article  Google Scholar 

  21. Huang M, Feng JQ, Wang JX (2003) J Mater Sci- Mater M 14:655–660

    Article  Google Scholar 

  22. Ural E, Kesenci K, Fambri L (2000) Biomaterials 21:2147–2154

    Article  Google Scholar 

  23. Hao L, Savalani MM, Zhang Y, Tanner KE, Harris RA (2006) J Eng Med 220:521–531

    Article  Google Scholar 

  24. Porter BD, Oldham JB, He SL, Zobitz ME, Payne RG, An KN, Currier BL, Mikos AG MJY (2000) JBiomech Eng 122(3):286–8

    Article  Google Scholar 

  25. Lang SM, Moyle DD, Berg EW, Detorie N, Gilpin AT, Pappas NJ Jr, Reynolds JC, Tkacik M, Waldron RL (1988) J Bone Jt Surg Am 70(10):1531–8

    Google Scholar 

  26. Lotz JC, Gerhart TN, Hayes WC (1990) J Comput Assist Tomogr 14(1):107–14

    Article  Google Scholar 

  27. Goulet RW, Goldstein SA, Ciarelli MJ, Kuhn JL, Brown MB, Feldkamp LA (1994) J Biomech 27(4):375–89

    Article  Google Scholar 

  28. Mow VC, Hayes WC (1997) Basic orthopaedic biomechanics. Lippincott, Philadelphia, pp 88–89

    Google Scholar 

  29. Ouyang J, Yang GT, Wu WZ, Zhu QA, Zhong SZ (1997) Clin Biomech 12(7/8):522–4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gean V. Salmoria.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salmoria, G.V., Fancello, E.A., Roesler, C.R.M. et al. Functional graded scaffold of HDPE/HA prepared by selective laser sintering: microstructure and mechanical properties. Int J Adv Manuf Technol 65, 1529–1534 (2013). https://doi.org/10.1007/s00170-012-4277-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-012-4277-y

Keywords

Navigation