Skip to main content
Log in

A new variable structure sliding mode control strategy for FTS in diamond-cutting microstructured surfaces

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

There was a serious cutting force disturbance in diamond-cutting microstructured surfaces with fast tool servo (FTS) resulting from their discontinuous profile. Although variable structure sliding mode control (VSSMC) strategy with exponential approaching law for FTS can suppress cutting force disturbance to a certain extent in machining process, high machined surface quality was hardly obtained because of the disadvantage of the exponential approaching law. A new VSSMC strategy with a combined approaching law for FTS was presented in this paper. A series of validating experiments were performed in unload and cutting situation respectively. The experimental results showed that the VSSMC with combined approaching law had an obvious advantage in FTS tracking performance over that with exponential approaching law. The system steady-state error was decreased from ±2 to ±0.5 %, and the system rise time was reduced from 2 to 0.8 ms. Measured results of the square-pit microstructured surfaces fabricated by two different strategies showed that a decrease of 10–30 % in the machined surface roughness and an improvement of more than 10 % in the profile accuracy were accomplished by the proposed strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Richter H, Misawa EA, Lucca DA, Lu H (2001) Modeling nonlinear behavior in a piezoelectric actuator. Precis Eng 25(2):128–137

    Article  Google Scholar 

  2. Miller AC, Cuttino JF (1997) Performance evaluation and optimization of a fast tool servo for single point diamond turning machines. SPIE 3134:318–328

    Article  Google Scholar 

  3. Kim H, Kim E (2003) Feed-forward control of fast tool servo for real-time correction of spindle error in diamond turning of flat surfaces. Int J Mach Tools Manuf 43(12):1177–1183

    Article  Google Scholar 

  4. Wang HF, Hu DJ, Wan DP, Liu HB (2006) Hysteresis compensation for piezoelectric actuators in single-point diamond turning. SPIE 6149:341–347

    Google Scholar 

  5. Dang X, Tan Y (2005) An inner product-based dynamic neural network hysteresis model for piezoceramic actuators. Sens Actuat A Phys 121(2):535–542

    Article  Google Scholar 

  6. Zhao L, Chen D, Kong H (1994) Neuron net control and its application in precision feed mechanism of machine tool driven by PZT. Proceedings of the IEEE International Conference on Industrial Technology. Shanghai, China

  7. Tong Z, Tan Y, Zeng X (2005) Modeling hysteresis using hybrid method of continuous transformation and neural networks. Sens Actuat A Phys 19(1):254–262

    Article  Google Scholar 

  8. Shieh HJ, Lin FJ, Huang PK, Teng LT (2004) Adaptive tracking control solely using displacement feedback for a piezo-positioning mechanism. IEE P Contr Theor Ap 151(5):653–660

    Article  Google Scholar 

  9. Hwang CL, Chen YM, Jan C (2005) Trajectory tracking of large displacement piezoelectric actuators using a nonlinear observer-based variable structure control. IEEE T Contr Syst T 13(1):56–66

    Article  Google Scholar 

  10. Chang T, Sun X (2001) Analysis and control of monolithic piezoelectric nanoactuator. IEEE T Contr Syst T 9(1):69–75

    Article  Google Scholar 

  11. Song G, Zhao J, Zhou X, de Abreu-Garcia JA (2005) Tracking control of a piezoceramic actuator with hysteresis compensation using inverse Preisach model. IEEE ASME T Mech 10(2):198–209

    Article  Google Scholar 

  12. Ru C, Sun L (2005) Improving positioning accuracy of piezoelectric actuators by feedforward hysteresis compensation based on a new mathematical model. Rev Sci Instrum 76(9):1–8

    Article  Google Scholar 

  13. Goldfarb M, Celanovic N (1997) Modeling piezoelectric stack actuators for control of micro manipulation. IEEE Contr Syst Mag 17(3):69–79

    Article  Google Scholar 

  14. Oh JH, Bernstein DS (2005) Semilinear Duhem model for rate-independent and rate-dependent hysteresis. IEEE T Automat Contr 50(5):631–645

    Article  MathSciNet  Google Scholar 

  15. Banning R, de Koning WL, Adriaens HJMTA, Koops RK (2001) State space analysis and identification for a class of hysteretic systems. Automatica 37(12):1883–1892

    Article  MathSciNet  MATH  Google Scholar 

  16. Janocha H, Kuhnen K (2000) Real-time compensation of hysteresis and creep in piezoelectric actuators. Sensor Actuat A Phys 79(2):83–89

    Article  Google Scholar 

  17. Ge P, Jouaneh M (1997) Generalized Preisach model for hysteresis nonlinearity of piezoceramic actuators. Precis Eng 20(2):99–111

    Article  Google Scholar 

  18. Li C, Tan Y (2004) A neural networks model for hysteresis nonlinearity. Sensor Actuat A Phys 112(1):49–54

    Article  Google Scholar 

  19. Dang X, Tan Y (2005) Neural networks dynamic hysteresis model for piezoceramic actuator based on hysteresis operator of first-order differential equation. Physica B 365(1–4):173–184

    Article  Google Scholar 

  20. Ge P, Jouaneh M (1995) Modeling hysteresis in piezoceramic actuators. Precis Eng 17(3):211–221

    Article  Google Scholar 

  21. Yu Y, Xiao Z, Naganathan NG, Dukkipati RV (2002) Dynamic Preisach modelling of hysteresis for the piezoceramic actuator system. Mech Mach Theory 37(1):75–89

    Article  MathSciNet  MATH  Google Scholar 

  22. Schitter G, Stemmer A (2004) Identification and open-loop tracking control of a piezoelectric tube scanner for high-speed scanning-probe microscopy. IEEE T Contr Syst T 12(3):449–454

    Article  Google Scholar 

  23. Sun L, Ru C, Rong W, Chen L, Kong M (2004) Tracking control of piezoelectric actuator based on a new mathematical model. J Micromech Microeng 14(11):1439–1444

    Article  Google Scholar 

  24. Lv Y, Wei Y (2004) Study on open-loop precision positioning control of a micropositioning platform using a piezoelectric actuator. Proceedings of the 5th World Congress on Intelligent Control and Automation. Hangzhou, China

  25. Hwang CL, Chen BS (1990) Constant turning force adaptive control via sliding mode control design. Trans ASME 112(2):308–312

    MathSciNet  MATH  Google Scholar 

  26. Buckner GD (2001) Intelligent sliding mode control of cutting force during single-point turning operations. J Manuf Sci E-T ASME 123:206–213

    Article  Google Scholar 

  27. Utkin VI (1977) Variable structure systems with sliding modes. IEEE T Automat Contr 22(2):212–222

    Article  MathSciNet  MATH  Google Scholar 

  28. Hung JY, Gao W, Hung JC (1993) Variable structure control: a survey. IEEE T Ind Electron 40(1):2–22

    Article  Google Scholar 

  29. Zhang HJ, Chen SJ, Zhou M, Yang YH (2009) Fast tool servo control for diamond cutting microstructured optical components. J Vac Sci Technol B 27(3):1226–1229

    Article  Google Scholar 

  30. Liu JK (2005) MATLAB simulation for sliding mode control. Tsinghua University Press, Beijing

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haijun Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Dong, G., Zhou, M. et al. A new variable structure sliding mode control strategy for FTS in diamond-cutting microstructured surfaces. Int J Adv Manuf Technol 65, 1177–1184 (2013). https://doi.org/10.1007/s00170-012-4249-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-012-4249-2

Keywords

Navigation