Skip to main content

Advertisement

Log in

Thermal error modeling and compensation of long-travel nanopositioning stage

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Thermally induced error of nanopositioning systems is rarely studied specifically because most researchers strictly limit the ambient temperature in order to ignore the influences of thermal deformation. However, the control cost of a narrow temperature range is too high for widely application. This paper is addressed at modeling and compensation of thermal error with the purpose of ensuring the positioning accuracy with an extended temperature range. The finite element analysis and contrast experiments with different temperature ranges reveal the significant impact of temperature variation on positioning precision. A polynomial model based on the genetic algorithm is implemented to describe the relationship between deviations and temperatures. By utilizing the parametric study, the optimal parameters of the genetic algorithm are determined. Based on the thermal model, a compensation system has been developed. A constant proportional–integral–derivative (PID) controller and a single-neuron PID controller are employed for compensation, respectively. The results demonstrate that the single-neuron PID controller can effectively restrain thermal error and guarantee the location accuracy with extended temperature range. The positioning precision of the positioning stage with compensation system and temperature range of 20 + 0.3°C is improved to 12 nm, while the one of the original system with temperature range of 20 ± 0.01°C is 31 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gao W (2010) Precision nanometrology: sensors and measuring systems for nanomanufacturing. Springer, Berlin

    Book  Google Scholar 

  2. Chu CL, Fan SH (2006) A novel long-travel piezoelectric-driven linear nanopositioning stage. Precis Eng 30:85–95

    Article  Google Scholar 

  3. Ito K, Takigawa N, Yamamoto M, Iwasaki M, Matsui N (2008) On-line parameter tuning of disturbance compensation in precision positioning. 10th IEEE International Workshop on Advanced Motion Control 26–28:672–676

  4. Buice ES, Otten D, Yang RH, Smith ST, Hocken RJ, Trumper DL (2008) Design evaluation of a single-axis precision controlled positioning stage. Precis Eng 33:418–424

    Article  Google Scholar 

  5. Lu LH, Liang YC, Guo YF, Akira (2010) Design and testing of a nanometer positioning system. J Dyn Syst Meas Control 132:021011

    Article  Google Scholar 

  6. Gao P, Tan H, Yuan ZJ (2000) The design and characterization of a piezo-driven ultra-precision stepping positioner. Meas Sci Technol 11:15–19

    Article  Google Scholar 

  7. Wang JS, Sun LT, Feng MC, Zhu CA (2011) Modeling and validation of ultra precision positioning system. Appl Mech Mater 87:200–205

    Article  Google Scholar 

  8. Niedermann Ph, Emch R, Decouts P (1998) Simple piezoelectric translation device. Rev Sci Instrum 59:368–369

    Article  Google Scholar 

  9. Chang SH, Li SS (1999) A high resolution long travel friction drive micropositioner with programmable step size. Rev Sci Instrum 70:2776–2782

    Article  Google Scholar 

  10. Zhong BW, Chen LS, Wang ZH, Sun LN (2011) Movement modeling and testing of a novel trans-scale positioning stage based on the stick–slip effect. Appl Mater Res 225–226:684–687

    Google Scholar 

  11. Amthor A, Zschaech S, Ament C (2010) High precision position control using an adaptive friction compensation approach. IEEE Trans Autom Control 55:274–278

    Article  Google Scholar 

  12. Tong D, Veldhuis SC, Elbestawi MA (2007) Control of a dual stage magnetostrictive actuator and linear motor feed drive system. Int J Adv Manuf Technol 33:379–388

    Article  Google Scholar 

  13. Ball SJ, Folsom C, Mclean AB (2005) A compact nanopositioning stage with high vibrational eigenfrequencies. Rev Sci Instrum 76:113702

    Article  Google Scholar 

  14. Lamikiz A, López de Lacalle LN, Ocerin O, Díez D, Maidagan E (2008) The Denavit and Hartenberg approach applied to evaluate the consequences in the tool tip position of geometrical errors in five-axis milling centres. Int J Adv Manuf Technol 37:122–139

    Article  Google Scholar 

  15. Marinescu V, Constantin I, Apostu C, Marin FB, Banu M, Epureanu A (2011) Adaptive dimensional control based on in-cycle geometry monitoring and programming for CNC turning center. Int J Adv Manuf Technol 55:1079–1097

    Article  Google Scholar 

  16. Tseng PC, Ho JL (2002) A study of high-precision CNC lathe thermal errors and compensation. Int J Adv Manuf Technol 19:850–858

    Article  Google Scholar 

  17. Eastwood S, Webb P (2009) Compensation of thermal deformation of a hybrid parallel kinematic machine. Robot Cim-Int Manuf 25:81–90

    Article  Google Scholar 

  18. Wu CH, Kung YT (2006) Thermal analysis and compensation of a double-column machining centre. Proc Inst Mech Eng B J Eng 220:109–117

    Article  Google Scholar 

  19. Wu H, Zhang HT, Guo QJ, Wang XS, Yang JG (2008) Thermal error optimization modeling and real-time compensation on a CNC turning center. J Mater Process Technol 207:172–179

    Article  Google Scholar 

  20. Kim HS, Kim EJ (2003) Feed-forward control of fast tool servo for real-time correction of spindle error in diamond turning of flat surfaces. Int J Mach Tool Manuf 43:1177–1183

    Article  Google Scholar 

  21. Pahk HJ, Lee SW (2002) Thermal error measurement and real time compensation system for the CNC machine tools incorporating the spindle thermal error and the feed axis thermal error. Int J Adv Manuf Technol 20:487–494

    Article  Google Scholar 

  22. Zhang HT, Yang JG, Zhang Y (2011) Measurement and compensation for volumetric positioning errors of CNC machine tools considering thermal effect. Int J Adv Manuf Technol 55:275–283

    Article  Google Scholar 

  23. Raghavendra MRA, Kumar AS, Jagdish BN (2010) Design and analysis of flexure-hinge parameter in microgripper. Int J Adv Manuf Technol 49:1185–1193

    Article  Google Scholar 

  24. Olvera D, López de Lacalle LN, Compeán FI, Fz-Valdivielso A, Lamikiz A, Campa FJ (2011) Analysis of the tool tip radial stiffness of turn-milling centers. Int J Adv Manuf Technol. doi:10.1007/s00170-011-3645-3

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingshu Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Zhu, C., Feng, M. et al. Thermal error modeling and compensation of long-travel nanopositioning stage. Int J Adv Manuf Technol 65, 443–450 (2013). https://doi.org/10.1007/s00170-012-4183-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-012-4183-3

Keywords

Navigation