Skip to main content
Log in

Predicting the grain size and hardness of AZ91/SiC nanocomposite by artificial neural networks

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In the present study, SiC nanoparticles were added to as-cast AZ91 magnesium alloy through friction stir processing (FSP) and an AZ91/SiC surface nanocomposite layer was produced. A relation between the FSP parameters and grain size and hardness of nanocomposite using artificial neural network (ANN) was established. Experimental results showed that distribution of nanoparticles in the stirred zone (SZ) was not uniform and SZ was divided into two regions. In the ANN modeling, the inputs included traverse speed, rotational speed, and region types. Outputs were hardness and grain size. The model can be used to predict hardness and grain size as functions of rotational and traverse speeds and region types. To check the adequacy of the ANN model, the linear regression analyses were carried out to compute the correlation coefficients. The calculated results were in good agreement with experimental data. Additionally, a sensitivity analysis was conducted to determine the parametric impact on the model outputs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liao J, Yamamoto N, Nakata K (2009) Effect of dispersed intermetallic particles on microstructural evolution in the friction stir weld of a fine-grained magnesium alloy. Metall Mater Trans A 40:2212–2219

    Article  Google Scholar 

  2. Hassan SF, Gupta M (2006) Effect of particulate size of Al2O3 reinforcement on microstructure and mechanical behaviour of solidification processed elemental Mg. J Alloy Comp 419:84–90

    Article  Google Scholar 

  3. Asadi P, Besharati Givi MK, Faraji G (2010) Producing ultrafine-grained AZ91 from As-Cast AZ91 by FSP. Mater Manuf Process 25:1219–1226

    Article  Google Scholar 

  4. Faraji G, Asadi P (2011) Characterization of AZ91/alumina nanocomposite produced by FSP. Mater Sci Eng A 528:2431–2440

    Article  Google Scholar 

  5. Huang W, Hou B, Pang Y, Zhou Z (2006) Fretting wear behavior of AZ91D and AM60B magnesium alloys. Wear 260:1173–1178

    Article  Google Scholar 

  6. Kang SH, Lee YS, Lee JH (2008) Effect of grain refinement of magnesium alloy AZ31 by severe plastic deformation on material characteristics. J Mater Process Technol 201:436–440

    Article  Google Scholar 

  7. Lai MO, Lu L, Laing W (2004) Formation of magnesium nanocomposite via mechanical milling. Compos Struct 66:301–304

    Article  Google Scholar 

  8. Mishra RS, Ma ZY (2005) Friction stir welding and processing. Mater Sci Eng R 50:1–78

    Article  MATH  Google Scholar 

  9. Barmouz M, Asadi P, BesharatiGivi MK, Taherishargh M (2011) Investigation of mechanical properties of Cu/SiC composite fabricated by FSP: effect of SiC particles’ size and volume fraction. Mater Sci Eng A 528:1740–1749

    Article  Google Scholar 

  10. Woo W, Choo H (2008) Microstructure, texture and residual stress in a friction-stir-processed AZ31B magnesium alloy. Acta Mater 56:1701–1711

    Article  Google Scholar 

  11. Barmouz M, Besharati Givi MK, Seyfi J (2010) On the role of processing parameters in producing Cu/SiC metal matrix composites via friction stir processing: investigating microstructure, microhardness, wear and tensile behavior. Mater Charact 62:108–117

    Article  Google Scholar 

  12. Okuyucu H, Kurt A, Arcaklioglu E (2007) Artificial neural network application to the friction stir welding of aluminum plates. Mater Des 28:78–84

    Article  Google Scholar 

  13. Acherjee B, Mondal S, Tudu B, Misra D (2011) Application of artificial neural network for predicting weld quality in laser transmission welding of thermoplastics. Appl Soft Comput 11:2548–2555

    Article  Google Scholar 

  14. Dai Y, Duan C (2009) Beam element modelling of vehicle body-in-white applying artificial neural network. Appl Math Model 33:2808–2817

    Article  MATH  Google Scholar 

  15. Zhang JY, Liang SY, Zhang G, Yen D (2006) Modeling of residual stress profile in finish hard turning. Mater Manuf Process 21:39–45

    Article  MATH  Google Scholar 

  16. Singh AK, Panda SS, Pal SK, Chakraborty D (2006) Predicting drill wear using an artificial neural network. Int J Adv Manuf Technol 28:456–462

    Article  Google Scholar 

  17. Park JM, Kang HT (2007) Prediction of fatigue life for spot welds using back-propagation neural networks. Mater Des 28:2577–2584

    Article  Google Scholar 

  18. Martín Ó, De Tiedra P, López M, San-Juan M, García C, Martín F, Blanco Y (2009) Quality prediction of resistance spot welding joints of 304 austenitic stainless steel. Mater Des 30:68–77

    Article  Google Scholar 

  19. Pohlak M, Majak J, Karjust K, Küttner R (2010) Multicriteria optimization of large composite parts. Compos Struct 92:2146–2152

    Article  Google Scholar 

  20. Ates H (2007) Prediction of gas metal arc welding parameters based on artificial neural networks. Mater Des 28:2015–2023

    Article  Google Scholar 

  21. Muthukrishnan N, Paulo Davim J (2009) Optimization of machining parameters of Al/SiC-MMC with ANOVA and ANN analysis. J Mater Process Technol 209:225–232

    Article  Google Scholar 

  22. Demuth H, Beale M (1998) Neural network toolbox for use with MATLAB, Users Guide. Version 3. The MathWorks, Inc., Massachusetts

  23. Montano JJ, Palmer A (2003) Numeric sensitivity analysis applied to feed forward neural networks. Neural Comput Appl 12:119–125

    Article  Google Scholar 

  24. G. D. Garson (1991) Interpreting neural-network connection weights. AI Expert 47–51

  25. Dutta S, Gupta JP (2010) PVT correlations for Indian crude using artificial neural networks. J Petrol Sci Eng 72:93–109

    Article  Google Scholar 

  26. Chiang WK, Zhang D, Zhou L (2006) Predicting and explaining patronage behavior toward web and traditional stores using neural networks: a comparative analysis with logistic regression. Decis Support Syst 41:514–531

    Article  Google Scholar 

  27. Gevrey M, Dimopoulos I, Lek S (2003) Review and comparison of methods to study the contribution of variables in artificial neural network models. Ecol Model 160:249–264

    Article  Google Scholar 

  28. Tchaban T, Taylor MJ, Griffin JP (1998) Establishing impacts of the inputs in a feed forward neural network. Neural Comput Appl 7:309–317

    Article  MATH  Google Scholar 

  29. Wang W, Jones P, Partridge D (2000) Assessing the impact of input features in a feed forward neural network. Neural Comput Appl 9:101–112

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Asadi.

Appendix

Appendix

The computation process is as follows:

  1. 1.

    For each hidden neuron, the absolute value of the output layer weight multiply by the absolute value of the hidden layer weight. This process implies for each input. Then, the following tables are obtained:

Weight of various layer

Hidden layer neuron no.

Traverse speed

Rotational speed

Region type

Grain size

1

−55.3178

−95.5384

3.3025

−2.3188

2

−4.1112

4.3033

3.9569

1.3847

3

1.4662

−9.1465

25.9532

1.6541

4

6.6795

25.6189

1.3834

0.17792

5

−113.018

3.3554

5.0194

23.9326

6

−2.4343

6.6717

4.376

1.9267

Weight of various layer

Hidden layer neuron no.

Traverse speed

Rotational speed

Region type

Hardness

1

39.9372

−61.4851

−3.8629

0.092301

2

7.0352

56.0055

15.0031

−0.17464

3

−3.4478

−3.9941

−3.4619

−0.76524

4

0.19705

19.4762

23.4907

−3.3633

5

−1.8155

23.5069

−14.1

−0.99639

6

−7.0957

−0.6522

−4.542

−0.64619

Grain size calculation.

Hidden layer neuron no.

Traverse speed

Rotational speed

Region type

Sum

1

P 11 = 128.2709

P 12 = 221.5344

P 13 = 7.6578

357.4632

2

P 21 = 5.6927

P 22 = 5.9587

P 23 = 5.4791

17.1306

3

P 31 = 2.4251

P 31 = 15.1292

P 33 = 42.9291

60.4836

4

P 41 = 1.1884

P 42 = 4.5581

P 43 = 0.2461

5.9926

5

P 51 = 2704.819

P 52 = 80.3034

P 53 = 120.1273

2,905.25

6

P 61 = 4.6901

P 62 = 12.8543

P 63 = 8.4312

25.97577

Hardness calculation

Hidden layer neuron no.

Traverse speed

Rotational speed

Region type

Sum

1

P 11 = 3.6862

P 12 = 5.6751

P 13 = 0.3565

9.7179

2

P 21 = 1.2286

P 22 = 9.7808

P 23 = 2.6201

13.6295

3

P 31 = 2.6383

P 32 = 3.0564

P 33 = 2.6491

8.3440

4

P 41 = 0.6627

P 42 = 65.5043

P 43 = 79.0062

145.1733

5

P 51 = 1.8089

P 52 = 23.42204

P 53 = 14.0491

39.28009

6

P 61 = 4.58517

P 62 = 0.4214

P 63 = 2.9349

7.9416

2. To obtain Q ij for each hidden neuron, P ij was divided into the sum; for all the input variables. For example for 1, \( {Q_{{11}}} = {P_{{11}}}/\left( {{P_{{11}}} + {P_{{12}}} + {P_{{13}}}} \right) \).3. For each input neuron, assume S j to be the sum of Q ij . For example, \( {S_1} = {Q_{{11}}} + {Q_{{21}}} + {Q_{{31}}} + {Q_{{41}}} + {Q_{{51}}} + {Q_{{61}}} \). Then, the following tables are obtained.

Grain size calculation

Hidden layer neuron no.

Traverse speed

Rotational speed

Region type

1

Q 11 = 0.3588

Q 12 = 0.6197

Q 13 = 0.021423

2

Q 21 = 0.33231

Q 22 = 0.347843

Q 23 = 0.319843

3

Q 31 = 0.040097

Q 32 = 0.250137

Q 33 = 0.709765

4

Q 41 = 0.198312

Q 42 = 0.760616

Q 43 = 0.041073

5

Q 51 = 0.931011

Q 52 = 0.02764

Q 53 = 0.041348

6

Q 61 = 0.180559

Q 62 = 0.49486

Q 63 = 0.324581

Sum

S 1 = 2.041131

S 2 = 2.50083

S 3 = 1.458032

Hardness calculation

Hidden layer neuron no.

Traverse speed

Rotational speed

Region type

1

Q 11 = 0.379324

Q 12 = 0.583986

Q 13 = 0.03669

2

Q 21 = 0.090144

Q 22 = 0.717616

Q 23 = 0.192239

3

Q 31 = 0.316202

Q 32 = 0.366303

Q 33 = 0.317495

4

Q 41 = 0.004565

Q 42 = 0.451214

Q 43 = 0.54422

5

Q 51 = 0.046052

Q 52 = 0.596283

Q 53 = 0.357665

6

Q 61 = 0.57736

Q 62 = 0.053068

Q 63 = 0.369572

Sum

S 1 = 1.413648

S 2 = 2.768471

S 3 = 1.817881

4. By dividing each S j into the sum, the relative importance of each input parameter can be calculated. For example, for the first input parameter (traverse speed), the relative importance is equal to \( \left( {{S_1} \times 100} \right)/\left( {{S_1} + {S_2} + {S_3}} \right) \).

Relative importance of input parameters on grain size.

Relative importance (%)

Traverse speed

Rotational speed

Region type

34.01885

41.68061

24.30054

Relative importance of input parameters on hardness.

Relative importance (%)

Travers speed

Rotational speed

Region type

23.5608

46.14119

30.29802

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asadi, P., Givi, M.K.B., Rastgoo, A. et al. Predicting the grain size and hardness of AZ91/SiC nanocomposite by artificial neural networks. Int J Adv Manuf Technol 63, 1095–1107 (2012). https://doi.org/10.1007/s00170-012-3972-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-012-3972-z

Keywords

Navigation