Skip to main content
Log in

Envelope dynamic analysis: a new approach for milling process monitoring

  • Original Article
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Vibration analysis has long been used for the detection and identification of the condition of machine tools. This paper proposes a method for vibration analysis in order to monitor online the milling process quality based on synchronous envelope analysis. Adapting envelope spectral analysis to characterize the milling tool is an important contribution for qualitative and quantitative characterization of milling capacity. It is a stage in modeling the three-dimensional cutting process. To determine different parameters, to understand the phenomenon which takes place during the cutting process, and to validate the monitoring algorithm, it was necessary to build and to use a complex analysis system. An experimental protocol was designed and developed for the acquisition, processing, and analyzing the three-dimensional signal. The vibration envelope analysis is proposed to detect the cutting capacity of the tool with the optimization application of cutting parameters. This purpose is reached by a detailed dynamic study of the manufacturing system divided into two parts. The first one concerns the complete analysis of the machine, of the main spindle. A dynamic analysis method is developed to completely characterize the various components of machine tools. The second is concentrated on the cutting process to condition monitoring and diagnosis. The research is focused on fast Fourier transform optimization of vibration analysis and vibration synchronous envelope to evaluate the dynamic behavior of the machine/tool/workpiece.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Girardin F, Remond D, Rigal J-F (2010) A new method for detecting tool wear and breakage in milling. Int J Mater Form 3:463–466

    Article  Google Scholar 

  2. Teti R, Jemielniak K, O’Donnell G, Dornfeld D (2010) Advanced monitoring of machining operations. CIRP Ann Manuf Technol 59:717–739

    Article  Google Scholar 

  3. Ai C-S, Sun Y-J, He G-W, Ze X-B, Li W, Mao K (2011) The milling tool wear monitoring using the acoustic spectrum. Int J Adv Manuf Technol 57. doi:10.1007/s00170-011-3738-z

    Google Scholar 

  4. Chementin X, Balaers F, Cousinard O, Rasolofondraibe L (2008) Early detection of rolling bearing defect by demodulation of vibration signal using adapted wavelet. J Vib Control 14(11):1675–1690

    Article  MathSciNet  Google Scholar 

  5. Marichal G-N, Artes M, Garcia-Prada J-C (2011) An intelligent system for faulty-bearing detection based on vibration spectra. J Vib Control 17:1675–1690

    Article  Google Scholar 

  6. Quintana G, Ciurana J (2011) Chatter in machining processes: a review. Int J Mach Tools Manuf 51(5):363–376. doi:10.1016/j.ijmachtools.2011.01.001

    Article  Google Scholar 

  7. Novakov T, Jackson MJ (2010) Chatter problem in micro- and macrocutting operations, existing models, and influential parameters–a review. Int J Adv Manuf Technol 47(5–8):597–620. doi:10.1007/s00170-009-2213-6

    Article  Google Scholar 

  8. Thevenot V, Arnaud L, Dessein G, Cazenave-Larroche G (2006) Integration of dynamic behaviour variations in stability lobes method: 3D lobes construction and application to thin walled structure milling. Int J Adv Manuf Technol 27(7–8):638–644

    Article  Google Scholar 

  9. Peigne G, Paris H, Brissaud D (2003) A model of milled surface generation for time domain simulation of high-speed cutting. Proc Inst Mech Eng B J Eng Manuf 217(7):919–930

    Article  Google Scholar 

  10. Seguy S, Insperger T, Arnaud L, Dessein G, Peigné G (2010) On the stability of high-speed milling with spindle speed variation. Int J Adv Manuf Technol 48(9–12):883–895

    Article  Google Scholar 

  11. Gagnol V, Le T-P, Ray P (2011) Modal identification of spindle–tool unit in high-speed machining. Mech Syst Signal Process 25(11):2388–2398

    Article  Google Scholar 

  12. Robert G, Landers A, Ulsay G (1996) Chatter analysis of machining system with nonlinear force processes. ASME J Manuf Sci Eng 58:183–190

    Google Scholar 

  13. Cowley A (1970) Structural analysis. Machine tool structures. Pergamon, Oxford

    Google Scholar 

  14. Dimla Sr DE (2004) The impact of cutting conditions on cutting forces and vibration signals in turning with plane face geometry inserts. J Mater Process Technol 155–156:1 708–1 715

    Google Scholar 

  15. Tobias SA, Fishwick W (1958) Theory of regenerative tool chatter. Engineer London 205:199–238

    Google Scholar 

  16. Merrit HE (1965) Theory of self-excited machine tool chatter. Contribution to machine tool chatter research. J Eng Ind 87:447–454

    Article  Google Scholar 

  17. Dassanayake AV, Suh CS (2008) On nonlinear cutting response and tool chatter in turning operation. Communic in Nonlin Sci and Num Simul 13(5):979–1 001

    Google Scholar 

  18. Kegg RL (1965) Cutting dynamics in machine tool chatter. J Eng Ind 87:464–470

    Article  Google Scholar 

  19. Costes J-P, Moreau V (2011) Surface roughness prediction in milling based on tool displacement. J Manuf Process 13(2):133–140

    Article  Google Scholar 

  20. Benardos PG, Mosialos S, Vosniakos GC (2006) Prediction of workpiece elastic deflections under cutting forces in turning. Robot Comput-Integr Manuf 22:505–514

    Article  Google Scholar 

  21. Marinescu I, Ispas C, Boboc D (2002) Handbook of machine tool analysis. Dekker, New York

    Google Scholar 

  22. Tlusty J, Polacek M (1963) The stability of machine tools against self-excited vibrations in machining. Int Res in Prod Engng 465–474

  23. Chiou YS, Chung ES, Liang SY (1995) Analysis of tool wear effect on chatter stability in turning. Int J Mech Sci 37(4):391–404

    Article  Google Scholar 

  24. Li X (2001) Real-time prediction of workpiece errors for CNC for turning center, part 4. Cutting-force-induced errors. Int J Adv Manuf Technol 17:665–669

    Article  Google Scholar 

  25. Cano T, Chapelle F, Lavest J-M, Ray P (2008) A new approach to identifying the elastic behaviour of a manufacturing machine. Int J Mach Tools Manuf 48:1 569–1 577

    Article  Google Scholar 

  26. Altintas Y, Budak E (1995) Analytical prediction of stability lobes in milling. CIRP Ann Manuf Technol 44(1):357–362

    Article  Google Scholar 

  27. Altintas Y (2001) Analytical prediction of three dimensional chatter stability in milling. JSME Int J Ser C Mech Syst Mach Elem Manuf 44(3):717–723

    Article  MathSciNet  Google Scholar 

  28. Cahuc O, Darnis P, Gérard A, Battaglia J-L (2001) Experimental and analytical balance sheet in turning applications. Int J Adv Manuf Technol 18(9):648–656

    Article  Google Scholar 

  29. Cahuc O, Darnis P, Laheurte R (2007) Mechanical and thermal experiments in cutting process for new behaviour law. Int J Form Process 10(2):235–269

    Article  Google Scholar 

  30. Tsai NC, Chen DC, Lee RM (2010) Chatter prevention for milling process by acoustic signal feedback. Int J Adv Manuf Technol 47(9-12):1013–1021. doi:10.1007/s00170-009-2245-y

    Article  Google Scholar 

  31. Chen CK, Tsao YM (2006) A stability analysis of turning tailstock supported flexible work-piece. Int J Mach Tools Manuf 46(1):18–25

    Article  Google Scholar 

  32. Chang JY, Lay GJ, Chen MF (1994) A study of the chatter characteristics of the thin wall cylindrical workpiece. Int J Mach Tools Manuf 34(4):489–498

    Article  Google Scholar 

  33. Engin S, Altintas Y (2001) Mechanics and dynamics of general milling cutters. Part II: inserted cutters. Int J Mach Tools Manuf 39:2213–2231

    Article  Google Scholar 

  34. Mei C (2005) Active regenerative chatter suppression during boring manufacturing process. Robot Comput-Integr Manuf 21:153–158

    Article  Google Scholar 

  35. Rehorn A-G, Jiang J, Orban P-E (2005) State-of-the-art methods and results in tool condition monitoring: a review. Int J Adv Manuf Technol 26(7–8):693–710. doi:10.1007/s00170-004-2038-2

    Article  Google Scholar 

  36. Bisu CF, Darnis P, Gérard A, K’nevez J-Y (2009) Displacements analysis of self-excited vibrations in turning. Int J Adv Manuf Technol 44(1–2):1–16. doi:10.1007/s00170-008-1815-8

    Article  Google Scholar 

  37. Moreau V, Costes J-P, Fares C (2006) Dispositif de mesure de vibrations d’outils durant les opérations de fraisage. In: 4e Assises Machines et Usinage à Grande Vitesse—ENSAM, Aix en Provence, France, juin 2006

  38. Zapciu M, Cahuc O, Bisu CF, Gérard A, K’nevez JY (2009) Experimental study of machining system: dynamic characterization. J Mach Form Techn 1(3–4):167–184

    Google Scholar 

  39. Pan F, Qin S-R, Bo L (2006) Development of diagnosis system for rolling bearings faults based on virtual instrument technology test center. In: International symposium on instrumentation science and technology, vol 48. Journal of physics: conference series, pp 467–473. doi:10.1088/1742-6596/48/1/089

  40. Astakhov VP, Galitsky VV (2006) Tribology of metal cutting. Elsevier, Amsterdam

    Google Scholar 

  41. Wang X (2006) Numerical implementation of the Hilbert transform. Thèse de Doctorat, University of Saskatchewan, Saskatoon

  42. Gagnol V, Bouzgarrou B-C, Ray P, Barra C (2006) Model-based chatter stability prediction for high-speed spindles. Int J Mach Tools Manuf 47:1176–1186

    Article  Google Scholar 

  43. Amsted BH, Ostwald PF, Begeman ML (1987) Manufacturing process. Wiley, New York

    Google Scholar 

  44. Bisu CF, Zapciu M, Gérard A, Vijelea V, Ananica M (2010) Envelope dynamic analysis for cutting milling tool. In: Eighth international conference on high speed machining—HSM, 8–10 December 2010, Metz, France. Arts et Métiers ParisTech—ENSAM

  45. Mei D, Yao Z, Kong T, Chen Z (2010) Parameter optimization of time-varying stiffness method for chatter suppression based on magnetorheological fluid-controlled boring bar. Int J Adv Manuf Technol 47(9–12):1071–1083. doi:10.1007/s00170-009-2116-9

    Article  Google Scholar 

  46. Mendel E, Rauber T-W, Varejao F-M, Batista R-J (2009) Rolling element bearing fault diagnosis in rotating machines of oil extraction RIGS. In: 17th European Signal Processing Conference (EUSIPCO 2009), Glasgow, Scotland, 24–28 August 2009

  47. Yao Z, Mei D, Chen Z (2010) On-line chatter detection and identification based on wavelet and support vector machine. J Mater Process Technol 210(5):713–719. doi:10.1016/j.jmatprotec.2009.11.007

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Gérard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bisu, C.F., Zapciu, M., Cahuc, O. et al. Envelope dynamic analysis: a new approach for milling process monitoring. Int J Adv Manuf Technol 62, 471–486 (2012). https://doi.org/10.1007/s00170-011-3814-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-011-3814-4

Keywords

Navigation