Skip to main content
Log in

ISO manufacturing tolerancing: three-dimensional transfer with analysis line method

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Functional tolerancing described in definition drawing of mechanical parts constitutes a contract to be respected by manufacturers. Process engineers have to choose process plans able to manufacture part respecting functional requirements and have to determine manufacturing specifications for each phase. Tolerance zone transfer method offers a three-dimensional algorithm of manufacturing specifications generation with International Organization for Standardization (ISO) standards. Analysis line method, developed in this article, establishes the calculus relation of the results of the tolerance chains according to the tolerances of manufacturing specifications to allow the tolerance synthesis. In this paper, the analysis line method is presented using an example. The aim is to show the hypotheses made during transfers in the context of ISO standards of tolerancing and to define accurately the datum reference frames used and deviations between these frames at particular points named analysis points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anselmetti B (1983) Simulation d’usinage bidimensionnelle sur un exemple en tournage commande numérique, revue Mécanique Matériaux Electricité n°398

  2. Anselmetti B, Bourdet P (1993) Optimization of a workpiece considering production requirements. Rev Computer in Industry 21:23–34

    Article  Google Scholar 

  3. Anselmetti B, Louati H (2005) Generation of manufacturing tolerancing with ISO standard. Int J Mach Tool Manuf 45:1145–1153

    Article  Google Scholar 

  4. Anselmetti B (2006) ISO manufacturing tolerancing with tolerance zone transfer. Revue int d’ingénierie mécanique 2(n°1–2):57–70

    Google Scholar 

  5. Anselmetti B (2009) Cotation fonctionnelle tridimensionnelle et statistique, Lavoisier

  6. Anselmetti B Part optimization and tolerances synthesis. Int J Adv Manuf Technol. doi:10.1007/s00170–009–2355–6, en ligne 24 oct 2009

  7. Ayadi B, Anselmetti B, Bouaziz Z, Zghal A (2008) Three-dimensional modelling of manufacturing tolerancing using the ascendant approach. Int J Adv Manuf Technol 39:279–290. doi:10.1007/s00170-007–1225–3

    Article  Google Scholar 

  8. Ballot E, Bourdet P (1997) A computational method for the consequences of geometrical errors in mechanisms, Proceeding of CIRP Computer Aided Tolerancing 5th seminar, Toronto, Canada, pp137,148

  9. Bellacicco A, Sellakh, Arotcarena P, Riviere A, Méthode rationnelle de tolérancement 3D du process, 9th CIRP seminar on CAT, Phoenix, USA

  10. Bennis F, Pino L, Fortin C (1998) Geometric tolerance transfer for manufacturing by an algebraic method. Integrated Design and Manufacturing in Mechanical Engineering’98: Proceedings of the 2nd IDMME Conference (Compiègne, France), pp. 373–380

  11. Benea R, Cloutier G, Fortin C (2003) Process plan validation including process deviations and machine tool errors. Geometric product specification and verification: integration of functionality. Kluwer: Netherlands. pp 197–206 5

  12. Bourdet P (1973) Chaînes de cotes de fabrication, Revue l’Ingénieur et le technicien de l’enseignement technique, n°191

  13. Bourdet P, Ballot E (1995) Équations formelles et tridimensionnelles des chaînes de dimensions dans les mécanismes, 4th CIRP Seminar on Computer Aided Tolerancing, University of Tokyo 5–6 April

  14. Bourdet P, Mathieu L, Lartigue C, Ballu A (1996) The concept of small displacement torsor in metrology. In: Advanced mathematical tool in metrology II in series on advances in mathematics for applied sciences. World Scientific, vol. 40

  15. Caux M, Anselmetti B (2011) 3D ISO manufacturing specifications with vectorial representation of tolerance zones. Int J Adv Manufact Tech. doi:10.107/s00170-011-3638-2

  16. Clement A, Le Pivert P, Riviere A (1996) Modélisation des procédés d’usinage. Simulation 3D réaliste. Conférence IDMME 96, Nantes Avril 96, pp 355–364

  17. Dantan JY, Ball A, Thiebaut F, Bourdet P (2000) Functional and manufacturing specifications: validation of a process plan, 3th IDMME Montréal

  18. Desrochers A, Verheul S (1999) A three-dimensional tolerance transfer methodology Proc of the 6th CIRP seminar on computer aided tolerancing, Twente, Netherlands, pp. 83–92

  19. Dong Z (1997) Tolerance synthesis by manufacturing cost modeling and design optimization. In: Zhang HC (ed) Advanced tolerancing techniques. Wiley, New York, pp 233–260

    Google Scholar 

  20. Fainguelernt D, Weill R, Bourdet P (1986) Computer-aided tolerancing and dimensioning in process planning. Ann of CIRP 35(1):381–386

    Article  Google Scholar 

  21. Hong YS, Chang TC (2002) A comprehensive review of tolerancing research. Int J Prod Res 40(n°11):2425–2459

    Article  MATH  Google Scholar 

  22. Huang SH, Liu Q (2003) Rigorous application of tolerance analysis in setup planning. Int J Adv Manuf Technol 3:196–207

    Google Scholar 

  23. Jaballi K, Bellacicco A, Louati J, Riviere A, Haddar M Dimensioning of the intermediate states of the machined phases “DISMP” approach. Int J Adv Manuf Technol. doi:10.1007/s00170-009–2040–9

  24. Ji P, Ke M, Ahluwalia RS (1995) Computer aided operational dimensioning for process planning. Int J Mach Tools Manuf 35(10):1353–1362

    Article  Google Scholar 

  25. Kanaï S, Onozuka M, Takahashi H (1995) Optimal Tolerance synthesis by genetic algorithm under the machining and assembling constraints, 4th CIRP CAT Seminar, Tokyo, Japan, pp. 263–282

  26. Kamali N, Vignat F, Villeneuve F (2009) Simulation of the geometrical defects of manufacturing. Int J Adv Manuf Technol 45:631–648. doi:10.1007/s00170-009–2001–3

    Article  Google Scholar 

  27. Le Pivert P (1998) Contribution à la modélisation et à la simulation réaliste des processus d’usinage, these Ecole Centrale de Paris

  28. Lin A, Lin M-Y, Ho H-B (1999) CAPP and its integration with tolerance charts for machining of aircraft components. Rev Computers Ind V38:263–283

    Article  Google Scholar 

  29. Louati J, Ayadi B, Bouaziz Z, Haddar M (2006) Three-dimensional model-ling of geometric defaults to optimize a manufactured part setting. Int J Adv Manuf Technol 29(No 3–4):342–348

    Article  Google Scholar 

  30. Teissandier D, Couétard Y, Gérard A (1997) Three–dimensional functional tolerancing with proportionnel assemblies clearance volume (U.P.E.L.), application to setup planning, 5th CIRP CAT Seminar, Toronto, Canada, pp.113–124

  31. Thiebaut F (2001) Contribution à la définition d’un moyen unifié de gestion de la géométrie réaliste basé sur le calcul des lois de comportement des mécanismes. Thèse ENS Cachan

  32. Thimm G, Lin J (2005) Redimensioning parts for manufacturability: a design rewriting system. Int J Adv Manuf Technol 26:399–404

    Article  Google Scholar 

  33. Tichadou S, Legoff O, Hascoet JY (2005) 3D geometrical manufacturing simulation compared approaches between integrated CAD/CAM system and small displacement torsor models, IDMME, pp 201–214

  34. Vignat F, Villeneuve F (2007) A numerical approach for 3D manufacturing tolerances synthesis. 10th CIRP Conference on CAT, Erlangen Germany

  35. Vignat F, Villeneuve F (2007) Analyse et synthèse tridimensionnelles de spécifications de fabrication, pp 311–344, HERMES, Tolérancement géométrique des produits

  36. Villeneuve F, Legoff O, Landon Y (2001) Tolerancing for manufacturing: a three dimensional model. Int J prod res V39(n°8):1625–1648

    Article  Google Scholar 

  37. Villeneuve F, Vignat F., Simulation of the manufacturing process: generic resolution of the positioning problem, 9th CIRP seminar on CAT, Tempe, USA

  38. Zhang Y, Hu W, Rong Y, Yen DW (2001) Graph-based set-up planning and tolerance decomposition for computer-aided fixture design. Int J prod res V39(n°14):3109–3126

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Anselmetti.

Appendix: Setting-up on three perpendicular planes

Appendix: Setting-up on three perpendicular planes

This appendix depicts a particular case of general relations established in Section 3.4, with three planes perpendicular each one to the others:

$$ d\left( {F,{\mathbf{f}}} \right) = {\text{Kp}}.d\left( {P.{\mathbf{p}}} \right) + {\text{Ks}}.d\left( {{\text{S}}.{\mathbf{s}}} \right) + {\text{Kt}}.d\left( {T.{\mathbf{t}}} \right);{\text{Kt}} = \frac{\text{fx}}{{\text{tx}}}{\text{; Ks}} = \frac{\text{fy}}{{\text{sy}}}{\text{; Kp}} = \frac{\text{fz}}{{\text{pz}}} $$
(30)

With:

$$ \begin{gathered} {\text{Xs}} = {\text{Xf}}\left( {{\text{Yt}} - {\text{Yf}}} \right).{\text{fx}}/{\text{fy}} \hfill \cr {\text{Ys}} = Y{1} + \left( {Y{2} - Y{1}} \right).\left( {{\text{Xs}} - X{1}} \right)/\left( {X{2} - X{1}} \right) \hfill \cr {\text{Zs}} = Z{1} + \left( {Z{2} - Z{1}} \right).\left( {{\text{Xs}} - X{1}} \right)/\left( {X{2} - X{1}} \right) \hfill \cr {\text{Xp}} = {\text{Xf}} + \left( {{\text{Zt}} - {\text{Zf}}} \right).{\text{fx }}/{\text{fz}} \hfill \cr {\text{Yp}} = {\text{Yf}} + \left( {{\text{Zs}} - {\text{Zf}}} \right).{\text{fy}}/{\text{fz}} \hfill \cr {\text{Zp}} = 0 \hfill \cr \end{gathered} $$

1.1 Analysis line parallel to the secondary plane

If fy = 0 and fz # 0, The analysis line is parallel to the secondary plane, but is nonperpendicular to the tertiary plane. The position of the secondary plane has no effect on F point. Only its orientation around z has influence. P point can be used to void the effect of rotations in x and y.

$$ {\text{Xp}}\,{ = }\,{\text{Xf}}\,{ + }\,\left( {{\text{Zt}}--{\text{Zf}}} \right).{\text{fx/fz;}}\,{\text{Yp}}\,{ = }\,{\text{Yf;}}\,{\text{Zp}}\,{ = }\,{0} $$

Then the relation will be:

$$ \matrix{<!--{*{20}{c}}--> {d\left( {F,{\mathbf{f}}} \right) = {\text{Kp}}{.}d\left( {P{,}{\mathbf{p}}} \right) + \left| {\text{Lz}} \right| \times a\left( {{\text{secondary}}\,{\text{plane,}}\,{\mathbf{r}}} \right) + {\text{Kt}}{.}d\left( {T{,}{\mathbf{t}}} \right)} \hfill \cr {{\text{with: Kt}} = \frac{\text{fx}}{{\text{tx}}}{;}\,{\text{Kp}} = \frac{\text{fz}}{{\text{pz}}}{\text{; Lz}} = \left( {{\text{Yt}} - {\text{Yf}}} \right){\text{.fx;}}} \hfill \cr } $$
(31)
  • The vector t = ±x is chosen so that tx will have the same sign as fx.

  • The vector p = ±z is chosen so that pz will have the same sing as fz.

  • If Lz > 0, r = z. If Lz < 0, r = −z.

1.2 Analysis line parallel to the primary plane

If fz = 0 and fy # 0, The analysis line is parallel to the primary plane. The primary plane only orientates the part.

$$ \begin{gathered} {\text{Xs}}\,{ = }\,{\text{Xf}} + \left( {{\text{Yt}} - {\text{Yf}}} \right){\text{.fx/fy}} \hfill \cr {\text{Ys}} = Y{1} + \left( {Y{2} - Y{1}} \right).\left( {{\text{Xs}} - X{1}} \right)/\left( {X{2} - X{1}} \right) \hfill \cr {\text{Zs}} = Z{1} + \left( {Z{2} - Z{1}} \right).\left( {{\text{Xs}} - X{1}} \right)/\left( {X{2} - X{1}} \right) \hfill \cr \end{gathered} $$

The relation becomes:

$$ \begin{gathered} d\left( {F,{\mathbf{f}}} \right) = {\text{Kt}}.{ }d\left( {T,{\mathbf{t}}} \right) + {\text{ Ks}}.{ }d\left( {S,{\mathbf{s}}} \right) + \left( {a.{\text{Lx}} + b.{\text{Ly}}} \right) \hfill \cr {\text{with: Kt}} = \frac{\text{fx}}{{\text{tx}}}{\text{; Ks}} = \frac{\text{fy}}{{\text{sy}}};{\text{ Lx}} = \left( {{\text{Zs}} - {\text{Zf}}} \right).{\text{fy}};{\text{Ly}} = \left( {{\text{Zf}} - {\text{Zt}}} \right).{\text{fx }} \hfill \cr \end{gathered} $$
(32)

The coefficients Kt and Ks must be positive because the defect influences only add up. This rule allows us to orientate the vectors s and t:

  • The vector t = ±x is chosen so that tx will have the same sign as fx.

  • The vector s = ±y is chosen so that sy will have the same sign than fy.

α is th rotation around x and β the one around y.

$$ \begin{gathered} d\left( {F,{\mathbf{f}}} \right){ } = {\text{ Kt}}.{ }d\left( {T,{\mathbf{t}}} \right) + {\text{ Ks}}.{ }d\left( {{\text{S}},{\mathbf{s}}} \right){ } + { }\left| {\text{Lx}} \right|.a\left( {{\text{primary plane}},{\mathbf{r1}}} \right){ } + { }\left| {\text{Ly}} \right|.a\left( {{\text{primary plane}},{\mathbf{r2}}} \right) \hfill \cr {\text{If Lx}} > 0,{ }r{1} = x.{\text{ If Lx}} < 0,{ }r{1} = - x. \hfill \cr {\text{If Ly}} > 0,{ }r{2} = y.{\text{ If Ly}} < 0,{ }r{2} = - y. \hfill \cr \end{gathered} $$
(33)

To study the maximum influence of the plane angle, the direction r of the resultant is determined:

$$ {\mathbf{r}} = \frac{{{\text{Lx}}{.}{\mathbf{x}} + {\text{Ly}}{.}{\mathbf{y}}}}{{\left\| {{\text{Lx}}{.}{\mathbf{x}} + {\text{Ly}}{.}{\mathbf{y}}} \right\|}} $$

The angular displacement of this plane around r is noted a (primary plane, r).

$$ d\left( {F,{\mathbf{f}}} \right) = {\text{Kt}}.{ }d\left( {T,{\mathbf{t}}} \right) + {\text{Ks}}.{ }d\left( {S,{\mathbf{s}}} \right) + {\text{Lr}}.a\left( {{\text{primary plane}},{\mathbf{r}}} \right)\,{\text{with }}Lr = \sqrt {{{\text{L}}{{\text{x}}^2} + {\text{L}}{{\text{y}}^2}}} $$
(34)

1.3 Analysis line perpendicular to the tertiary plane

If fy = 0 and fz = 0, the analysis line is perpendicular to the tertiary plane. In this case, the position is given by the tertiary point. The relation is:

$$ \matrix{<!--{*{20}{c}}--> {d\left( {F,{\mathbf{f}}} \right) = \left| {\text{Lz}} \right|.a\left( {{\text{primary plane}},{\mathbf{r}}1} \right) + \left| {\text{Ly}} \right|.a\left( {{\text{primary plane}},{\mathbf{r}}2} \right) + {\text{kt}}{.}d\left( {T{,}{\mathbf{t}}} \right)} \hfill \cr {{\text{with}}\,{\text{Kt}} = {\text{fx}}/{\text{tx}};{\text{Ly}} = \left( {{\text{Yt}} - {\text{Yf}}} \right).{\text{fx}};{\text{Lz}} = \left( {{\text{Zf}} - {\text{Zt}}} \right).{\text{fx}}} \hfill \cr } $$
(35)
  • The vector t = ±x is chosen so that tx will have the same sign as fx.

  • If Lz > 0, r1 = y. If Lz < 0, r1 = −y.

  • If Ly > 0, r2 = z. If Ly < 0, r2 = −z

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anselmetti, B. ISO manufacturing tolerancing: three-dimensional transfer with analysis line method. Int J Adv Manuf Technol 61, 1085–1099 (2012). https://doi.org/10.1007/s00170-011-3769-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-011-3769-5

Keywords

Navigation