Skip to main content

Advertisement

Log in

A review on assembly sequence planning and assembly line balancing optimisation using soft computing approaches

  • Original Article
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Assembly optimisation activities occur across development and production stages of manufacturing goods. Assembly Sequence Planning (ASP) and Assembly Line Balancing (ALB) problems are among the assembly optimisation. Both of these activities are classified as NP-hard. Several soft computing approaches using different techniques have been developed to solve ASP and ALB. Although these approaches do not guarantee the optimum solution, they have been successfully applied in many ASP and ALB optimisation works. This paper reported the survey on research in ASP and ALB that use soft computing approaches for the past 10 years. To be more specific, only Simple Assembly Line Balancing Problem (SALBP) is considered for ALB. The survey shows that three soft computing algorithms that frequently used to solve ASP and ALB are Genetic Algorithm, Ant Colony Optimisation and Particle Swarm Optimisation. Meanwhile, the research in ASP and ALB is also progressing to the next level by integration of assembly optimisation activities across product development stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Padron M, de los AIM, Resto P, Mejia HP (2009) A methodology for cost-oriented assembly line balancing problems. J Manuf Technol Manag 20(8):1147–1165

    Article  Google Scholar 

  2. Pan C (2005) Integrating CAD files and automatic assembly sequence planning. Ph.D. thesis, Iowa State University

  3. Marian R (2003) Optimisation of assembly sequences using genetic algorithm. Ph.D. thesis, University of South Australia

  4. Corallo A, Margherita M, Pascali G (2010) Digital mock-up to optimize the assembly of a ship fuel system. J Model Simul Syst 1(1):4–12

    Google Scholar 

  5. Chen RS, Lu KY, Yu SC (2002) A hybrid genetic algorithm approach on multi-objective of assembly planning problem. Eng Appl Artif Intell 15(5):447–457

    Article  Google Scholar 

  6. Scholl A, Becker C (2006) State-of-the-art exact and heuristic solution procedures for simple assembly line balancing. Eur J Oper Res 168(3):666–693

    Article  MathSciNet  MATH  Google Scholar 

  7. Qin YF, Xu ZG (2007) Assembly process planning using a multi-objective optimization method. In: Proceedings of the 2007 IEEE international conference on mechatronics and automation, ICMA 2007, 4303610, pp 593–598

  8. Lv H, Lu C (2010) An assembly sequence planning approach with a discrete particle swarm optimization algorithm. Int J Adv Manuf Technol 50(5–8):761

    Article  Google Scholar 

  9. Lendak I, Erdeljan A, Capko D, Vukmirovic S (2010) Algorithms in electric power system one-line diagram creation: the soft computing approach. In: IEEE international conference on systems, man and cybernetics, pp 2867–2873

  10. Tseng HE, Tang CE (2006) A sequential consideration for assembly sequence planning and assembly line balancing using the connector concept. Int J Prod Res 44(1):97–116

    Article  Google Scholar 

  11. Sinanoglu C, Boklu HR(2005) An assembly sequence-planning system for mechanical parts using neural network. Assem Autom 25(1):38–52

    Article  Google Scholar 

  12. Chen G, Zhou J, Cai W, Lai X, Lin Z, Menassa R (2006) A framework for an automotive body assembly process design system. CAD Comput Aided Des 38(5):531–539

    Article  Google Scholar 

  13. Chen WC, Tai PH, Deng WJ, Hsieh LF (2008) A three-stage integrated approach for assembly sequence planning using neural networks. Expert Syst Appl 34(3):1777–1786

    Article  Google Scholar 

  14. Mitrovic-Minic S, Krishnamurti V (2006) The multiple TSP with time windows: Vehicle bounds based on precedence graphs. Oper Res Lett 34(1):111–120

    Article  MathSciNet  MATH  Google Scholar 

  15. DeLit P, Latinne P, Rekiek B, Delchambre A (2001) Assembly planning with an ordering genetic algorithm. Int J Prod Res 39(16):3623–3640

    Article  Google Scholar 

  16. Choi YK, Lee DM, Cho YB (2009) An approach to multi-criteria assembly sequence planning using genetic algorithms. Int J Adv Manuf Technol 42(1–2):180–188

    Article  Google Scholar 

  17. Tseng YJ, Chen JY, Huang FY (2010) A particle swarm optimisation algorithm for multi-plant assembly sequence planning with integrated assembly sequence planning and plant assignment. Int J Prod Res 48(10):2765–2791

    Article  MATH  Google Scholar 

  18. Senin N, Groppetti R, Wallace DR (2000) Concurrent assembly planning with genetic algorithms. Robot Comput Integr Manuf 16(1):65–72

    Article  Google Scholar 

  19. Wang WP, Tseng HE (2009) Complexity estimation for genetic assembly sequence planning. J Chin Inst Ind Eng 26(1):44–52

    MathSciNet  Google Scholar 

  20. Chang CC, Tseng HE, Meng LP (2009) Artificial immune systems for assembly sequence planning exploration. Eng Appl Artif Intell 22(8):1218–1232

    Article  Google Scholar 

  21. Chen and Liu Chen SF, Liu YJ (2001) An adaptive genetic assembly-sequence planner. Int J Comput Integr Manuf 14(5):489–500

    Article  Google Scholar 

  22. Wang Y, Liu JH (2010) Chaotic particle swarm optimization for assembly sequence planning. Robot Comput Integr Manuf 26(2):212–222

    Article  MATH  Google Scholar 

  23. Cao PB, Xiao RB (2007) Assembly planning using a novel immune approach. Int J Adv Manuf Technol 31(7–8):770–782

    Google Scholar 

  24. Gao L, Qian W, Li X, Wang J (2010) Application of memetic algorithm in assembly sequence planning. Int J Adv Manuf Technol 49(9–12):1175–1184

    Article  Google Scholar 

  25. Yu H, Yu J, Zhang W (2009) An particle swarm optimization approach for assembly sequence planning. Appl Mech Mater 1228:16–19

    Google Scholar 

  26. Lazzerini B, Marcelloni F (2000) Genetic algorithm for generating optimal assembly plans. Artif Intell Eng 14(4):319–329

    Article  MathSciNet  Google Scholar 

  27. Guan Q, Liu JH, Zhong YF (2002) A concurrent hierarchical evolution approach to assembly process planning. Int J Prod Res 40(14):3357–3374

    Article  MATH  Google Scholar 

  28. Lu C, Wong YS, Fuh JYH (2005) An enhanced assembly planning approach using a multi-objective genetic algorithm. Proc Inst Mech Eng, B J Eng Manuf 220(2):255–272

    Article  Google Scholar 

  29. Li JR, Khoo LP, Tor SB (2003) A Tabu-enhanced genetic algorithm approach for assembly process planning. J Intell Manuf 14(2):197–208

    Article  Google Scholar 

  30. Marian RM, Luong LHS, Abhary K (2006) A genetic algorithm for the optimisation of assembly sequences. Comp Ind Eng 50(4):503–527.

    Article  Google Scholar 

  31. Xing Y, Wang Y, Zhao X (2010) A particle swarm algorithm for assembly sequence planning. Adv Mat Res 3243:97–101

    Google Scholar 

  32. Gu L, Hennequin S, Sava A, Xie X (2007) Assembly line balancing problems solved by estimation of distribution. In: Proceedings of the 3rd IEEE international conference on automation science and engineering, IEEE CASE 2007, pp 123–127

  33. Baybars I (1986) Survey of exact algorithms for the simple assembly line balancing problem. Manage Sci 32(8):909–932

    Article  MathSciNet  MATH  Google Scholar 

  34. Boysen N, Fliedner M, Scholl (2007) A classification of assembly line balancing problems. Eur J Oper Res 183(2):674–693

    Article  MathSciNet  MATH  Google Scholar 

  35. Betancourt L (2007) ASALBP: the alternative subgraphs assembly line balancing problem. Formalization and resolution procedures. Ph.D. thesis, Technical University of Catalonia

  36. Kilincci O, Bayhan GM (2006) A Petri net approach for simple assembly line balancing problems. Int J Adv Manuf Technol 30(11–12):1165–1173

    Article  Google Scholar 

  37. Tasan SO, Tunali S (2006) Improving the genetic algorithms performance in simple assembly line balancing. In: Lecture notes in computer science, LNCS vol 3984, pp 78–87

  38. Nof SY, WE W, Warnecke H (1997) Industrial assembly. Chapman & Hall, London

    Book  Google Scholar 

  39. Chica M, Cordon O, Damas S, Bautista J (2010) Multiobjective constructive heuristics for the 1/3 variant of the time and space assembly line balancing problem: ACO and random greedy search. Inf Sci 180(18):3465–3487

    Article  MathSciNet  Google Scholar 

  40. Ponnambalam SG, Aravindan P, Naidu GM (2000) Multi-objective genetic algorithm for solving assembly line balancing problem. Int J Adv Manuf Technol 16(5):341–352

    Article  Google Scholar 

  41. Capacho L, Pastor R (2008) Asalbp: The alternative subgraphs assembly line balancing problem. Int J Prod Res 46(13):3503–3516

    Article  MATH  Google Scholar 

  42. Whitney DE (2004) Mechanical assemblies: their design, manufacture and role in product development. Oxford University Press, New York

    Google Scholar 

  43. Zhang Z, Cheng W, Song L, Yu Q (2009) An ant-based algorithm for balancing assembly lines in a mass customization environment. In: International workshop on intelligent systems and applications, ISA 2009, 5072706

  44. McMullen PR, Tarasewich P (2006) Multi-objective assembly line balancing via a modified ant colony optimization technique. Int J Prod Res 44(1):27–42

    Article  MATH  Google Scholar 

  45. Chica M, Cordon O, Damas S, Pereira J, Bautista J (2008) Incorporating preferences to a multi-objective ant colony algorithm for time and space assembly line balancing. In: Lecture notes in computer science. LNCS vol 5217, pp 331–338

  46. Moon DS, Park BY (2007) Genetic algorithms for concurrent assembly planning. In: Regional computational conference, pp 214–219

  47. Smith SSF, Liu YJ (2001) The application of multi-level genetic algorithms in assembly planning. J Ind Technol 17(4):1

    Google Scholar 

  48. Smith GC, Smith SSF (2002) An enhanced genetic algorithm for automated assembly planning. Robot Comput-Integr Manuf 18(5–6):355–364

    Article  Google Scholar 

  49. Smith SSF (2004) Using multiple genetic operators to reduce premature convergence in genetic assembly planning. Comput Ind 54(1):35–49

    Article  Google Scholar 

  50. Tseng HE, Li JD, Chang YH (2004) Connector-based approach to assembly planning using a genetic algorithm. Int J Prod Res 42(11):2243–2261

    Article  Google Scholar 

  51. Bai YW, Chen ZN, Bin HZ, Hun J (2005) An effective integration approach toward assembly sequence planning and evaluation. Int J Adv Manuf Technol 27(1–2):96–105

    Article  Google Scholar 

  52. Udeshi T, Tsui K (2005) Assembly sequence planning for automated micro assembly. In: IEEE International symposium on assembly and task planning 2005, vol 2005, pp 98–105

  53. Pan C, Smith S, Smith G (2006) Automatic assembly sequence planning from STEP CAD files. Int J Comput Integr Manuf 19(8):775–783

    Article  Google Scholar 

  54. Tseng HE, Chen MH, Chang CC, Wang WP (2008) Hybrid evolutionary multi-objective algorithms for integrating assembly sequence planning and assembly line balancing. Int J Prod Res 46(21):5951–5977

    Article  MATH  Google Scholar 

  55. Tseng YJ, Chen JY, Huang FY (2010) A multi-plant assembly sequence planning model with integrated assembly sequence planning and plant assignment using GA. Int J Adv Manuf Technol 48(1–4):333–345

    Article  Google Scholar 

  56. Zhou W, Zheng J, Yan J, Wang J (2010) A novel hybrid algorithm for assembly sequence planning combining bacterial chemotaxis with genetic algorithm. Int J Adv Manuf Technol 52(5–8):715–724

    Google Scholar 

  57. Wang JF, Liu JH, Zhong YF (2005) A novel ant colony algorithm for assembly sequence planning. Int J Adv Manuf Technol 25(11–12):1137–1143

    Article  Google Scholar 

  58. Zhang J, Sun J, He Q (2010) An approach to assembly sequence planning using ant colony optimization. In: Proceedings of 2010 international conference on intelligent control and information processing, ICICIP 2010, vol part 2, pp 230–233

  59. Shuang B, Chen J, Li Z (2008) Microrobot based micro-assembly sequence planning with hybrid ant colony algorithm. Int J Adv Manuf Technol 38(11–12):1227–1235

    Article  Google Scholar 

  60. Lv HG, Lu C, Zha J (2010) A hybrid DPSO-SA approach to assembly sequence planning. In: IEEE international conference on mechatronics and automation, ICMA 2010, 5589203, pp 1998–2003

  61. Shan H, Li S, Gong D, Lou P (2006) Genetic simulated annealing algorithm-based assembly sequence planning. In: IET conference publications, vol 524, pp 1573–1579

  62. Li SX, Shan HB (2008) GSSA and ACO for assembly sequence planning: a comparative study. In: Proceedings of the IEEE international conference on automation and logistics, ICAL 2008, pp 1270–1275

  63. Tseng HE, Wang WP, Shih HY (2007) Using memetic algorithms with guided local search to solve assembly sequence planning. Expert Syst Appl 33(2):451–467

    Article  Google Scholar 

  64. Shan H, Zhou S, Sun Z (2009) Research on assembly sequence planning based on genetic simulated annealing algorithm and ant colony optimization algorithm. Assem Autom 29(3):249–256

    Article  Google Scholar 

  65. Hui C, Yuan L, Kai-Fu Z (2009) Efficient method of assembly sequence planning based on GAAA and optimizing by assembly path feedback for complex product. Int J Adv Manuf Technol 42(11–12):1187–1204

    Article  Google Scholar 

  66. Su Q (2009) A hierarchical approach on assembly sequence planning and optimal sequences analyzing. Robot Comput-Integr Manuf 25(1):224–234

    Article  Google Scholar 

  67. Sabuncuoglu I, Erel E, Tanyer M (2000) Assembly line balancing using genetic algorithms. J Intell Manuf 11(3):295–310

    Article  Google Scholar 

  68. Zhao ZY, Souza RD (2000) Genetic production line-balancing for the hard disk drive industry. Int J Adv Manuf Technol 16(4):297–302

    Article  Google Scholar 

  69. Goncalves JF, Almeida JRD (2002) A hybrid genetic algorithm for assembly line balancing. J Heuristics 8(6): 629–642

    Article  Google Scholar 

  70. Baykasoglu A (2006) Multi-rule multi-objective simulated annealing algorithm for straight and U type assembly line balancing problems. J Intell Manuf 17(2):217–232

    Article  MathSciNet  Google Scholar 

  71. Zhang R, Chen D, Wang Y, Yang Z, Wang X (2007) Study on line balancing problem based on improved genetic algorithms. In: International conference on wireless communications, networking and mobile computing, WiCOM 2007, 4340283, pp 2033–2036

  72. Zhang W, Gen M, Lin L (2008) A multiobjective genetic algorithm for assembly line balancing problem with worker allocation. In: IEEE international conference on systems, man and cybernetics, 4811759, pp 3026–3033

  73. Yu J, Yin Y (2010) Assembly line balancing based on an adaptive genetic algorithm. Int J Adv Manuf Technol 48(1–4):347–354

    Article  Google Scholar 

  74. Zacharia PT, Nearchou AC (2010) Multi-objective fuzzy assembly line balancing using genetic algorithms. J Intell Manuf 1–13. doi:10.1007/s10845-010-0400-9

  75. McMullen PR, Tarasewich P (2003) Using ant techniques to solve the assembly line balancing problem. IIE Trans (Institute of Industrial Engineers) 35(7):605–617

    Google Scholar 

  76. Blum C, Bautista J, Pereira J (2006) Beam-ACO applied to assembly line balancing. In: Lecture note in computer science (LNCS), vol 4150, pp 96–107

  77. Zhang, ZQ, Cheng WM, Tang LS, Zhong B (2008) Ant algorithm with summation rules for assembly line balancing problem. In: International conference on management science and engineering, ICMSE’07 (14th), 4421875, pp 369–374

  78. Blum C, Bautista J, Pereira J (2008) An extended beam-ACO approach to the time and space constrained simple assembly line balancing problem. In: Lecture notes in computer science (LNCS), vol 4972, pp 85–96

  79. Zhang ZQ, W-M C, B Z, Wang JN (2007) Improved ant colony optimization for assembly line balancing problem. Comput-Integr Manuf CIMS 13(8):1632–1638

    Google Scholar 

  80. Chica M, Cordon O, Damas S, Bautista J (2011) Including different kinds of preferences in a multi-objective ant algorithm for time and space assembly line balancing on different Nissan scenarios. Expert Syst Appl 38(1):709–720

    Article  Google Scholar 

  81. Lu JS, Jiang LL, Li XL (2009) Hybrid particle swarm optimization algorithm for assembly line balancing problem-2. In: Proceedings 2009 IEEE 16th International conference on industrial engineering and engineering management, pp 979–983

  82. Nearchou AC (2010) Maximizing production rate and workload smoothing in assembly lines using particle swarm optimization. Int J Prod Econ 12(2):242

    Google Scholar 

  83. Ozcan U, Toklu B (2009) A new hybrid improvement heuristic approach to simple straight and U-type assembly line balancing problems. J Intell Manuf 20(1):123–136

    Article  Google Scholar 

  84. Cakir B, Altiparmak F, Dengiz B (2010) Multi-objective optimization of a stochastic assembly line balancing: a hybrid simulated annealing algorithm. Comput Indu Eng 60(3):376

    Article  Google Scholar 

  85. Lin YY, Che ZH, Chiang TA, Che ZG, Chiang CJ (2009) A bi-objective model for concurrent planning of supplier selection and assembly sequence planning. In: Smith S (ed) Global perspective for competitive enterprise, economy and ecology. Springer, London, pp 573–580

    Chapter  Google Scholar 

  86. Lapierre SD, Ruiz A, Soriano P (2006) Balancing assembly lines with tabu search. Eur J Oper Res 168(3):826–837

    Article  MathSciNet  MATH  Google Scholar 

  87. Suwannarongsri S, Limnararat S,Puangdownreong D (2007) A new hybrid intelligent method for assembly line balancing. In: IEEE international conference on industrial engineering and engineering management, 4419365, pp 1115–1119

  88. Kilincci O (2010) A Petri net-based heuristic for simple assembly line balancing problem of type 2. Int J Adv Manuf Technol 46(1–4):329–338

    Article  Google Scholar 

  89. Liu SB, Ong HL, Huang HC (2003) Two bi-directional heuristics for the assembly line type II problem. Int J Adv Manuf Technol 22(9–10):656–661

    Article  Google Scholar 

  90. Khoo LP, Alisantoso D (2003) Line balancing of PCB assembly line using immune algorithms. Eng Comput 19(2–3):92–100

    Article  Google Scholar 

  91. Andrés C, Miralles C, Pastor R (2008) Balancing and scheduling tasks in assembly lines with sequence-dependent setup times. Eur J Oper Res 187(3):1212–1223

    Article  MATH  Google Scholar 

  92. Kilincci O, Bayhan GM (2008) A P-invariant-based algorithm for simple assembly line balancing problem of type-1. Int J Adv Manuf Technol 37(3–4):400–409

    Article  Google Scholar 

  93. Suwannarongsri S, Puangdownreong D (2008) Multi-objective assembly line balancing via adaptive tabu search method with partial random permutation technique. In: IEEE international conference on industrial engineering and engineering management, IEEM 2008, 4737881, pp 312–316

  94. Tijo S, Numar R (2008) Heuristic programming for assembly line balancing. In: Regional conference of mathematical programming. Seoul, pp 226–230

  95. Nearchou AC (2008) Multi-objective balancing of assembly lines by population heuristics. Int J Prod Res 46(8):2275–2297

    Article  MATH  Google Scholar 

  96. Yeh DH, Kao HH (2009) A new bidirectional heuristic for the assembly line balancing problem. Comput Indu Eng 57(4):1155–1160

    Article  Google Scholar 

  97. Martino L, Pastor R (2010) Heuristic procedures for solving the general assembly line balancing problem with setups. Int J Prod Res 48(6):1787–1804

    Article  Google Scholar 

  98. Goldberd D (2007) Genetic algorithms: the design of innovation. Springer, Berlin

    Google Scholar 

  99. Tasan S, Tunali S (2008) A review of the current applications of genetic algorithms in assembly line balancing. J Intell Manuf 19(1):49–69

    Article  Google Scholar 

  100. Gao J, Sun L, Wang L, Gen M (2009) An efficient approach for type II robotic assembly line balancing problems. Comput Ind Eng 56(3):1065–1080

    Article  Google Scholar 

  101. Moon I, Logendran R, Lee J (2009) Integrated assembly line balancing with resource restrictions. Int J Prod Res 47(19):5525–5541

    Article  MATH  Google Scholar 

  102. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: IEEE international conference on neural networks, vol 4, pp 1942–1948

  103. Sinavandam SN, Deepa SN (2008) Introduction to genetic algorithms. Springer, Berlin

    Google Scholar 

  104. Toksari MD, Isleyen SK, Guner E, Baykoc OF (2010) Assembly line balancing problem with deterioration tasks and learning effect. Expert Syst Appl 37(2):1223–1228

    Article  Google Scholar 

  105. Capacho L, Pastor R (2006) The ASALB problem with processing alternatives involving different tasks: definition, formalization and resolution. In: Lecture notes in computer science, vol 3982 LNCS, pp 554–563.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Fadzil Faisae Rashid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rashid, M.F.F., Hutabarat, W. & Tiwari, A. A review on assembly sequence planning and assembly line balancing optimisation using soft computing approaches. Int J Adv Manuf Technol 59, 335–349 (2012). https://doi.org/10.1007/s00170-011-3499-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-011-3499-8

Keywords

Navigation