Skip to main content

Advertisement

Log in

A GRASP heuristic for the multi-objective permutation flowshop scheduling problem

  • ORIGINAL ARTICLES
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This paper presents a multi-objective greedy randomized adaptive search procedure (GRASP)-based heuristic for solving the permutation flowshop scheduling problem in order to minimize two and three objectives simultaneously: (1) makespan and maximum tardiness; (2) makespan, maximum tardiness, and total flowtime. GRASP is a competitive metaheuristic for solving combinatorial optimization problems. We have customized the basic concepts of GRASP algorithm to solve a multi-objective problem and a new algorithm named multi-objective GRASP algorithm is proposed. In order to find a variety of non-dominated solutions, the heuristic blends two typical approaches used in multi-objective optimization: scalarizing functions and Pareto dominance. For instances involving two machines, the heuristic is compared with a bi-objective branch-and-bound algorithm proposed in the literature. For instances involving up to 80 jobs and 20 machines, the non-dominated solutions obtained by the heuristic are compared with solutions obtained by multi-objective genetic algorithms from the literature. Computational results indicate that GRASP is a promising approach for multi-objective optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al-Fawzana MA, Haouari M (2005) A bi-objective model for robust resource-constrained project scheduling. Int J Prod Econ 96:175–187

    Article  Google Scholar 

  2. Armentano VA, Arroyo JEC (2004) An application of a multi-objective tabu search algorithm to a bicriteria flowshop problem. J Heuristics 5:463–481

    Article  Google Scholar 

  3. Armentano VA, Ronconi DP (1999) Tabu search for total tardiness minimization in flowshop scheduling problems. Comput Oper Res 26:219–235

    Article  MathSciNet  MATH  Google Scholar 

  4. Arroyo JEC, Armentano VA (2004) A partial enumeration heuristic for multi-objective flowshop scheduling problems. J Oper Res Soc 55:1000–1007

    Article  MATH  Google Scholar 

  5. Arroyo JEC, Armentano VA (2005) Genetic local search for multi-objective flowshop scheduling problems. Eur J Oper Res 167:717–738

    Article  MathSciNet  MATH  Google Scholar 

  6. Arroyo JEC, Vieira OS, Vianna DS (2008) A GRASP algorithm for the multi-criteria minimum spanning tree problem. Ann Oper Res 159:125–133

    Article  MathSciNet  MATH  Google Scholar 

  7. Baños R, Gil C, Reca J, Martínez J (2009) Implementation of scatter search for multi objective optimization: a comparative study. J Comp Opt Applications 42(3):421–441

    Article  MATH  Google Scholar 

  8. Bernardo JJ, Lin K-S (1994) An interactive procedure for bi-criteria production scheduling. Comput Oper Res 21:677–688

    Article  MATH  Google Scholar 

  9. Coello CAC (1999) A comprehensive survey of evolutionary-based multiobjective optimization. Knowl Inf Syst 1(3):269–308

    Google Scholar 

  10. Czyzak P, Jaskiewicz A (1998) Pareto simulated annealing—a metaheuristic technique for multiple objective combinatorial optimization. J Multi-Criteria Decis Making 7:34–47

    Article  MATH  Google Scholar 

  11. Daniels RL, Chambers RJ (1990) Multiobjective flow-shop scheduling. Naval Res Logist 37:981–995

    Article  MATH  Google Scholar 

  12. Davoudpour H, Ashrafi M (2009) Solving multi-objective SDST flexible flow shop using GRASP algorithm. Int J Adv Manuf Technol 44:737–747

    Article  Google Scholar 

  13. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multi-objective genetic algorithms: NSGA2. IEEE J Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

  14. Dileepan P, Sen T (1988) Bicriterion static scheduling research for a single machine. Omega 16:53–59

    Article  Google Scholar 

  15. Feo T, Resende MGC (1995) Greedy randomizes adaptive search procedures. J Glob Optim 6:109–133

    Article  MathSciNet  MATH  Google Scholar 

  16. Festa P, Resende MGC (2009) An annotated bibliography of GRASP, part II: applications. Int Trans Oper Res 16:131–172

    Article  MathSciNet  MATH  Google Scholar 

  17. Framinan JM (2008) A fitness-based weighting mechanism for multicriteria flowshop scheduling using genetic algorithms. Int J Adv Manuf Technol 43:939–948

    Article  Google Scholar 

  18. Framinan JM, Leisten R (2008) A multi-objective iterated greedy search for flowshop scheduling with makespan and flowtime criteria. OR Spectr 30(4):787–804

    Article  MathSciNet  MATH  Google Scholar 

  19. Framinan JM, Leisten R, Ruiz-Usano R (2002) Efficient heuristics for flowshop sequencing with the objectives of makespan and flowtime minimization. Eur J Oper Res 141:559–569

    Article  MATH  Google Scholar 

  20. Fry TD, Armstrong RD, Lewis H (1989) A framework for single machine multiple objective sequencing research. Omega 17:595–607

    Article  Google Scholar 

  21. Gandibleux X, Ehrgott M (2005) 1984–2004—20 years of multiobjective. Metaheuristics. But what about the solution of combinatorial problems with multiple objectives? Lect Notes Comput Sci 3410:33–46

    Article  Google Scholar 

  22. Gandibleux X, Fréville A (2000) Tabu search based procedure for solving the 0–1 multiobjective knapsack problem: the two objectives case. J Heur 6:361–383

    Article  MATH  Google Scholar 

  23. Geiger MJ (2009) Improvements for multi-objective flow shop scheduling by Pareto Iterated Local Search. In: Proceedings of the 8th Metaheuristics International Conference MIC 2009, Hamburg, 13–16 July 2009, pp 195.1–195.10

  24. Gupta JND, Hennig K, Werner F (2002) Local search heuristics for two-stage flow shop problems with secondary criterion. Comput Oper Res 29:123–149

    Article  MATH  Google Scholar 

  25. Gupta JND, Neppalli VR, Werner F (2001) Minimizing total flow time in a two-machine flowshop problem with minimum makespan. Int J Prod Econ 69:323–338

    Article  Google Scholar 

  26. Gupta JND, Palanimuthu N, Chen C-L (1999) Designing a tabu search algorithm for the two-stage flow shop problem with secondary criterion. Prod Plan Control 10:251–265

    Article  Google Scholar 

  27. Hansen MP, Jaszkiewicz A (1998) Evaluating the quality of approximations to the nondominated set. Technical Report, Institute of Mathematical Modelling (1998-7), Technical University of Denmark

  28. Hoogeveen H (2005) Multicriteria scheduling. Eur J Oper Res 167:592–623

    Article  MathSciNet  MATH  Google Scholar 

  29. Ishibuchi H, Murata T (1998) A multi-objective genetic local search algorithm and its application to flowshop scheduling. IEEE Trans Syst, Man, Cyber C, Appl Rev 28:392–403

    Article  Google Scholar 

  30. Ishibuchi H, Yoshida T, Murata T (2003) Balance between genetic local search in memetic algorithms for multiobjective permutation flowshop scheduling. IEEE Trans Evol Comput 7(2):204–223

    Article  Google Scholar 

  31. Jaszkiewicz A (2002) Genetic local search for multi-objective combinatorial optimization. Eur J Oper Res 137:50–71

    Article  MathSciNet  MATH  Google Scholar 

  32. Jones DF, Mirrazavi SK, Tamiz M (2002) Multi-objective meta-heuristics: an overview of the current state-of-the-art. Eur J Oper Res 137:1–9

    Article  MATH  Google Scholar 

  33. Lei D (2008) Multi-objective production scheduling: a survey. Int J Adv Manuf Technol 43:926–938

    Article  Google Scholar 

  34. Li H, Landa-Silva D (2009) An elitist grasp metaheuristic for the multi-objective quadratic assignment problem. Lecture Notes in Computer Science, Evolutionary Multi-Criterion Optimization 5467:481–494

    Article  Google Scholar 

  35. Liang Y-C, Lo M-H (2009) Multi-objective redundancy allocation optimization using a variable neighborhood search algorithm. J Heur 16(3):511–535

    Article  Google Scholar 

  36. Liao C-J, Yu W-C, Joe C-B (1997) Bicriterion scheduling in the two-machine flowshop. J Oper Res Soc 48:929–935

    MATH  Google Scholar 

  37. Loukil T, Teghem J, Tuyttens D (2005) Solving multi-objective production scheduling problems using metaheuristics. Eur J Oper Res 161(1):42–61

    Article  MathSciNet  MATH  Google Scholar 

  38. Minella G, Ruiz R, Ciavotta M (2008) A review and evaluation of multi-objective algorithms for the flowshop scheduling problem. Informs J Comput 20(3):451–471

    Article  MathSciNet  Google Scholar 

  39. Mladenović N, Hansen P (1997) Variable neighborhood search. Comput Oper Res 24:1097–1100

    Article  MathSciNet  MATH  Google Scholar 

  40. Murata T, Ishibuchi H, Gen M (2001) Cellular genetic local search for multi-objective optimization. Lecture notes in computer science: evolutionary multi-criterion optimization, 1993:82–95

  41. Murata T, Ishibuchi H, Tanaka H (1996) Multi-objective genetic algorithm and its applications to flowshop scheduling. Comput Ind Eng 30:957–968

    Article  Google Scholar 

  42. Nagar A, Haddock J, Heragu S (1995) Multiple and bicriteria scheduling: a literatura survey. Eur J Oper Res 81:88–104

    Article  MATH  Google Scholar 

  43. Nagar A, Heragu S, Haddock J (1995) A branch and bound approach for a 2-machine flowshop scheduling problem. J Oper Res Soc 46:721–734

    MATH  Google Scholar 

  44. Nawaz M, Enscore EE, Ham I (1983) A heuristic algorithm for the m-machine, n-job flowshop sequencing problem. Omega 11:91–98

    Article  Google Scholar 

  45. Nebro AJ, Luna F, Alba E, Dorronsoro B, Durillo JJ, Beham A (2008) AbYSS: adapting scatter search to multiobjective optimization. IEEE Trans Evol Comput 12(4):439–457

    Article  Google Scholar 

  46. Pasupathy T, Rajendran C, Suresh RK (2005) A multi-objective genetic algorithm for scheduling in flow shops to minimize the makespan and total flow time of jobs. Int J Adv Manuf Technol 27:804–815

    Article  Google Scholar 

  47. Rahimi ARV, Mirghorbani SM (2007) A multi-objective particle swarm for a flow shop scheduling problem. J Comb Optim 13:79–102

    Article  MathSciNet  MATH  Google Scholar 

  48. Rajendran C (1992) Two-stage flow shop scheduling problem with bicriterio. J Oper Res Soc 43:871–884

    MATH  Google Scholar 

  49. Rajendran C (1995) Heuristics for scheduling in flowshop with multiple objectives. Eur J Oper Res 82:540–555

    Article  MATH  Google Scholar 

  50. Rajendran C, Ziegler H (2009) A multi-objective ant-colony algorithm for permutation flowshop scheduling to minimize the makespan and total flowtime of jobs. In: Chakraborty UK (ed) Studies in computational intelligence, computational intelligence in flow shop and job shop scheduling vol 230. Springer, Heidelberg, pp 53–99

    Chapter  Google Scholar 

  51. Reynolds AP, Iglesia BD (2009) A multi-objective GRASP for partial classification. Soft Comput 13(3):227–243

    Article  Google Scholar 

  52. Sayin S, Karabati S (1999) A bicriteria approach to the two-machine flow shop scheduling problem. Eur J Oper Res 113:435–449

    Article  MATH  Google Scholar 

  53. Şerifoğlu FS, Ulusoy G (1998) A bicriteria two-machine permutation flowshop problem. Eur J Oper Res 107:414–430

    Article  MATH  Google Scholar 

  54. T'kindt V, Billaut J-C (2001) Multicriteria scheduling problems: a survey. RAIRO Oper Res 35:143–163

    Article  MathSciNet  MATH  Google Scholar 

  55. T'kindt V, Billaut J-C, Proust C (2001) Solving bicriteria scheduling problem on unrelated parallel machines occurring in the glass bottle industry. Eur J Oper Res 135:42–49

    Article  MATH  Google Scholar 

  56. Ulungu EL, Teghem J, Ost Ch (1998) Efficiency of interactive multi-objective simulated annealing through a case study. J Oper Res Soc 49:1044–1050

    MATH  Google Scholar 

  57. Van Veldhuizen DA, Lamont GB (2000) Multiobjective evolutionary algorithms: analysing the state-of -art. Evol Comput 8:125–147

    Article  Google Scholar 

  58. Van Veldhuizen DA, Lamont GB (2000) Congress on evolutionary, on measuring multiobjective evolutionary algorithm performance. Computation 1:204–211

    Google Scholar 

  59. Varadharajan TK, Rajendran C (2005) A multi-objective simulated annealing for scheduling in flow shops to minimize the makespan and total flow time of jobs. Eur J Oper Res 167:772–795

    Article  MathSciNet  MATH  Google Scholar 

  60. Xiong Y, Kuang Y (2008) Applying an ant colony optimization algorithm-based multiobjective approach for time–cost trade-off. J Constr Eng M Asce 134(2):153–156

    Article  Google Scholar 

  61. Yagmahan B, Yenisey MM (2008) Ant colony optimization for multi-objective flow shop scheduling problem. Comput Ind Eng 54(3):411–420

    Article  Google Scholar 

  62. Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans Evol Comput 3(4):257–271

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Elias Claudio Arroyo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arroyo, J.C., de Souza Pereira, A.A. A GRASP heuristic for the multi-objective permutation flowshop scheduling problem. Int J Adv Manuf Technol 55, 741–753 (2011). https://doi.org/10.1007/s00170-010-3100-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-010-3100-x

Keywords

Navigation