Skip to main content
Log in

A new damping modelling approach and its application in thin wall machining

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In this paper, a new approach to modelling the damping parameters and its application in thin wall machining is presented. The approach to predicting the damping parameters proposed in this paper eliminates the need for experiments otherwise used to acquire these parameters. The damping model proposed was compared with available damping models and experimental results. A finite element analysis and Fourier transform approach has been used to obtain frequency response function (FRF) needed for stability lobes prediction. Several predicted stable regions using both experimental and numerical FRF’s for various examples gave a good comparison.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Taylor FW (1907) On the art of cutting metals. Trans Am Soc Mech Eng 28:31–350

    Google Scholar 

  2. Weck M, Altintas Y, Beer C (1994) CAD assisted chatter-free NC tool path generation in milling. Int J Mach Tools Manuf 34(6):879–891

    Article  Google Scholar 

  3. Tobias SA, Fishwick W (1958) A theory of regenerative chatter. The Engineer, London

    Google Scholar 

  4. Tlusty J, Polacek M (1963) The stability of machine tools against self excited vibrations in machining. Int Res Prod Eng ASME 465–474

  5. Merritt HE (1965) Theory of self-excited machine tool chatter. ASME J Eng Ind 87:447–454

    Google Scholar 

  6. Sridhar R, Hohn RE, Long GW (1968) General formulation of the milling process equation. ASME J Eng Ind 90:317–324

    Google Scholar 

  7. Slavicek J (1965) The effect of irregular tooth pitch on stability of milling. 6th MTDR Conference Manchester

  8. Vanherck P (1967) Increasing Milling Machine Productivity by Use of Cutters with Non-Constant Cutting – Edge Pitch, 8th MTDR Conference Manchester

  9. Tlusty J, Koenigsberger F (1970) Machine tool structures, vol. 1, 5th edn. Pergamon, Oxford

    Google Scholar 

  10. Opitz H (1968) Chatter Behaviour of Heavy Machine Tools, Quarterly Technical Report No 2 AF 61 (052)-916. Research and Technology Division, Wright Patterson Air Force Base, Dayton

    Google Scholar 

  11. Opitz H, Bernardi F (1970) Investigation and Calculation of the Chatter Behaviour of Lathes and Milling Machines. CIRP Ann 18:335–343

    Google Scholar 

  12. Minis I, Yanushevsky T (1993) A new theoretical approach for the prediction of machine tool chatter in milling. ASME J Eng Ind 115:1–8

    Google Scholar 

  13. Minis I, Yanushevsky T, Tembo R, Hocken R (1990) Analysis of Linear and Nonlinear Chatter in Milling. CIRP Ann 39:459–462

    Article  Google Scholar 

  14. Lee AC, Liu CS (1991) Analysis of chatter vibration in the end milling process. Int J Mach Tool Des Res 31(4):471–479

    Article  Google Scholar 

  15. Lee AC, Liu CS, Chiang ST (1991) Analysis of chatter vibration in a cutter – workpiece system. Int J Mach Tool Des Res 31(2):221–234

    Article  Google Scholar 

  16. Altintas Y, Budak E (1995) Analytical Prediction of Stability Lobes in Milling. CIRP Ann 44(1):357–362

    Article  Google Scholar 

  17. Merdol SD, Altintas Y (2004) Multi Frequency Solution of Chatter Stability for Low Immersion Milling, Journal of Manufacturing Science and Engineering. Trans ASME 126(3):459–466

    Article  Google Scholar 

  18. Bravo U, Altuzarra O, Lopez de Lacalle LN, Sanchez JA, Campa FJ (2005) Stability limits of milling considering the flexibility of the workpiece and the machine. Int J Mach Tools Manuf 45(15):1669–1680

    Article  Google Scholar 

  19. Solis E, Peres CR, Jimenez JE, Alique JR, Monje JC (2004) A new analytical–experimental method for the identification of stability lobes in high-speed milling. Int J Mach Tools Manuf 44(15):1591–1597

    Article  Google Scholar 

  20. Lacerda HB, Lima VT (2004) Evaluation of Cutting Forces and Prediction of Chatter Vibrations in Milling. J Braz Soc Mech Sci Eng 26(1):74–81

    Google Scholar 

  21. Budak E, Altintas Y (1998) Analytical Prediction of Chatter Stability in Milling – Part I: General Formulation. Trans ASME 120:22–30

    Google Scholar 

  22. Budak E, Altintas Y (1998) Analytical prediction of chatter stability in milling – Part II: application of the general formulation to common milling systems. Trans ASME 120:31–36

    Google Scholar 

  23. Campa FJ, Lopez de Lacalle LN, Lamikiz A, Sanchez JA (2007) Selection of cutting conditions for a stable milling of flexible parts with bull–nose end mills. J Mater Process Technol 191(1–3):279–282

    Article  Google Scholar 

  24. Adetoro OB, Sim WM, Wen PH (2010) Stability lobes prediction for corner radius end mill using nonlinear cutting force coefficients. Mach Sci Technol, in press

  25. Adetoro OB, Sim WM, Wen PH (2010) An improved prediction of stability lobes using nonlinear thin wall dynamics. J Mater Process Technol 210(6–7):969–979

    Article  Google Scholar 

  26. Thevenot V, Arnaud L, Dessein G, Cazenave-Larroche G (2006) Influence of material removal on the dynamics behavior of thin–walled structures in peripheral milling. Mach Sci Technol 10:275–287

    Article  Google Scholar 

  27. Seguy S, Campa FJ et al (2008) Toolpath Dependent Stability Lobes for the Milling of Thin–Walled Parts. Int J Mach Machinabil Mater 4(4):377–392

    Article  Google Scholar 

  28. Adetoro OB, Wen PH, Sim WM, Vepa R (2009) Numerical and experimental investigation for stability lobes prediction in thin wall machining. Engineering Letters 17(4):257–265, (available at: http://www.engineeringletters.com/issues_v17/issue_4/EL_17_4_07.pdf)

    Google Scholar 

  29. Quintana G, Ciurana J, Teixidor D (2008) A new experimental methodology for identification of stability lobes diagram in milling operations. Int J Mach Tools Manuf 48(6):1637–1645

    Article  Google Scholar 

  30. Quintana G, Ciurana J, Ferrer I, Rodríguez CA (2009) Sound mapping for stability lobes diagram identification in milling processes. Int J Mach Tools Manuf 49(3–4):203–211

    Article  Google Scholar 

  31. Rayleigh L (1878) Theory of sound, 1945th edition. Dover, New York

    Google Scholar 

  32. Caughey TK, O’Kelly MEJ (1960) Classical normal modes in damped linear systems. J Appl Mech 27:269–271

    MATH  MathSciNet  Google Scholar 

  33. Ewins DJ (1984) Modal testing: theory and practice. Research Studies, Letchworth

    Google Scholar 

  34. Allemang RJ, Brown DL (1986) Multiple input experimental modal analysis – a survey. Int J Anal Exp Modal Anal 1(1):37–44

    Google Scholar 

  35. Mitchell LD (1986) Signal Processing and fast – Fourier – transform (FFT) analyzer – a survey. Int J Anal Exp Modal Anal 1(1):24–36

    Google Scholar 

  36. Brown DL (1982) Modal analysis—past, present and future. Proceedings of the International Modal Analysis Conference & Exhibit

  37. Sanliturk KY, Cakar O (2005) Noise elimination from measured frequency response functions. Mech Syst Signal Process 19(3):615–631

    Article  Google Scholar 

  38. Cakar O, Sanliturk KY (2005) Elimination of transducer mass loading effects from frequency response functions. Mech Syst Signal Process 19(1):87–104

    Article  Google Scholar 

  39. He J, Fu Z (2001) Modal Analysis. Butterworth-Heinemann, Oxford

    Google Scholar 

  40. Altintas Y (2000) Manufacturing automation. Cambridge University Press, New York

    Google Scholar 

  41. Grimes RG, Lewis JG, Simon HD (1994) A shifted block lanczos algorithm for solving sparse symmetric generalised eigenproblems. SIAM J Matrix Anal Appl 15:228–272

    Article  MATH  MathSciNet  Google Scholar 

  42. Karlsson & Sorensen, Inc. (2006) Hibbitt, Abaqus Theory Manual. Karlsson & Sorensen, Pawtucket

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. H. Wen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adetoro, O.B., Wen, P.H. & Sim, W.M. A new damping modelling approach and its application in thin wall machining. Int J Adv Manuf Technol 51, 453–466 (2010). https://doi.org/10.1007/s00170-010-2658-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-010-2658-7

Keywords

Navigation