Skip to main content
Log in

Prediction of mechanistic cutting force coefficients using ALE formulation

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This paper demonstrated the use of an efficient and accurate numerical tool (i.e., FEA) in simulating the cutting process and determining both the average and instantaneous cutting force coefficients. The main advantage of this approach compared to other available methods is that it eliminates the need for experimental calibrations. In this approach, an Arbitrary Lagrangian Formulation was employed in the finite element method simulations. This formulation has been gaining more recognition in structural analysis for its combined advantages of both Lagrangian and Eulerian formulations in a single model. Based on the work of Kline et al. (ASME J Eng Ind 104:272–278, 10), the tool is discretised along the axis into segments and the cutting forces acting on the cutting edge segment are presented in terms of cutting force coefficients. Cutting force coefficients are obtained using the least squares method and cutting force predictions using evaluated coefficients are shown to match experimental results with satisfactory accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Merchant ME (1945) Mechanics of the metal cutting process I. Orthogonal cutting and a type 2 chip. J Appl Phys 16:267–275

    Article  Google Scholar 

  2. Lee EH, Schaffer BW (1951) Theory of plasticity applied to a problem of machining. J Appl Mech 18:405–413

    Google Scholar 

  3. Piispanen V (1948) Theory of formation of metal chips. J Appl Phys 19:876–881. doi:10.1063/1.1697893

    Article  Google Scholar 

  4. Oxley PLB, Welsh MJM (1963) Calculating the shear angle in orthogonal metal cutting from fundamental stress, strain, strain-rate properties of the work material. In: Proc 4th Int. Mach. Tool Des. Res. Conf., Oxford, pp 73–86

  5. Fenton RG, Oxley PLB (1969) Mechanics of orthogonal machining—predicting chip geometry and cutting forces from work-material properties and cutting conditions. Proc Inst Mech Eng 184:927–942

    Article  Google Scholar 

  6. Hastings WF, Mathew P, Oxley PLB (1980) Machining theory for prediction chip geometry, cutting forces etc from work material properties and cutting conditions. Proc R Soc Lond A Math Phys Sci 371(1747):569–587

    Article  Google Scholar 

  7. Martelloti ME (1941) An analysis of the milling process. Trans ASME 63:677–700

    Google Scholar 

  8. Koenigsberger F, Sabberwal AJP (1961) An investigation into the cutting force pulsations during milling operations. Int J Mach Tool Des Res 1:15–33. doi:10.1016/0020-7357(61)90041-5

    Article  Google Scholar 

  9. Tlusty J, MacNeil P (1975) Dynamics of cutting forces in end milling. Ann CIRP 24(1):21–25

    Google Scholar 

  10. Kline WA, Devor RE, Shareef LA (1982) Prediction of surface accuracy in end milling. ASME J Eng Ind 104(3):272–278

    Article  Google Scholar 

  11. Sutherland JW, DeVor RE (1986) Improved method for cutting force and surface error prediction in flexible end milling systems. J Eng Industry Trans ASME 108(4):269–279

    Article  Google Scholar 

  12. Armarego EA (1983) Practical implications of classical thin shear zone cutting analyses. UNESCO/CIRP Seminar on Manufacturing Technology, Singapore, pp 167–182

  13. Armarego EJA, Whitfield RC (1985) Computer based modelling of popular machining operations for force and power predictions. Ann CIRP 34:65–69

    Article  Google Scholar 

  14. Koch KF, Lilly B, Kropp E, Altan T (1990) Development of a CAE-module for calculating cutting forces in 3-axis milling of sculptured surfaces in die manufacturing. National Science Foundation ERC report ERC/NSM-D-90-43, The Ohio State University

  15. Tai C-C, Fuh K-H (1995) Prediction of cutting forces in the ball-end milling process. J Mater Process Technol 54(1–4):286–301. doi:10.1016/0924-0136(95)01813-1

    Article  Google Scholar 

  16. Feng HY, Menq CH (1994) The prediction of cutting forces in the ball-end milling process II, cut geometry analysis and model verification. Int J Mach Tools Manuf 34:711–719. doi:10.1016/0890-6955(94)90053-1

    Article  Google Scholar 

  17. Altintas Y, Lee P (1996) General mechanics and dynamics model for helical end mills, CIRP Annals. Manuf Technol 45(1):9–64

    Google Scholar 

  18. Altintas Y, Engin S (2001) Generalized modelling of mechanics and dynamics of milling cutters. CIRP Ann Manuf Technol 50(1):25–30

    Article  Google Scholar 

  19. Gradisek J, Kalveram M, Weinert K (2004) Mechanistic identification of specific force coefficients for a general end mill. Int J Mach Tools Manuf 44(4):401–414. doi:10.1016/j.ijmachtools.2003.10.001

    Article  Google Scholar 

  20. Wan M, Zhang WH, Qin GH, Tan G (2007) Efficient calibration of instantaneous cutting force coefficients and runout parameters for general end mills. Int J Mach Tools Manuf 47:1767–1776. doi:10.1016/j.ijmachtools.2006.06.012

    Article  Google Scholar 

  21. Yun W-S, Cho D-W (2001) Accurate 3-D cutting force prediction using cutting condition independent coefficients in end milling. Int J Mach Tools Manuf 41:463–478. doi:10.1016/S0890-6955(00)00097-3

    Article  Google Scholar 

  22. Bayoumi AE, Yucesan G, Kendall LA (1994) An analytic mechanistic cutting force model for milling operations: a theory and methodology, Transactions ASME. J Eng Ind 116:334–330

    Google Scholar 

  23. Armarego EJA, Despande NP (1989) Computerized predictive cutting model for cutting forces in end-milling including eccentricity effects. Ann CIRP 38(1):45–49. doi:10.1016/S0007-8506(07)62649-3

    Article  Google Scholar 

  24. Yun WS, Cho DW (2000) An improved method for the determination of 3D cutting force coefficients and runout parameters in end milling. Int J Adv Manuf Technol 16:851–858. doi:10.1007/s001700070001

    Article  MATH  Google Scholar 

  25. Ko JH, Cho DW (2005) 3D ball-end milling force model using instantaneous cutting force coefficients. Trans ASME J Manuf Sci Eng 127:1–12. doi:10.1115/1.1826077

    Article  Google Scholar 

  26. Klamecki (1973) BE Incipient chip formation in metal cutting—a three-dimension finite element analysis. Ph.D. Dissertation, University of Illinois at Urbana Champaign

  27. Shirakashi T, Usui E Simulation analysis of orthogonal metal cutting mechanism, IEE Conference Publication (1974) 535–540

  28. Iwata K, Osakada K, Terasaka Y (1984) Progress modelling of orthogonal cutting by the rigid-plastic finite element method. J Eng Mater Technol Trans ASME 106(2):132–138

    Article  Google Scholar 

  29. Strenkowski JS, Carroll JT (1985) A finite element model of orthogonal metal cutting. J Eng Ind Trans ASME 107(4):349–354

    Article  Google Scholar 

  30. Shih AJM, Chandrasekar S, Yang HTY (1990) Finite element simulation of metal cutting process with strain-rate and temperature effects, Dallas, TX, USA. ASME, New York

    Google Scholar 

  31. Shih AJ (1996) Finite element analysis of the rake angle effects in orthogonal metal cutting. Int J Mech Sci 38(1):1–17. doi:10.1016/0020-7403(95)00036-W

    Article  MATH  Google Scholar 

  32. Shet C, Deng X (2000) Finite element analysis of the orthogonal metal cutting process. J Mater Process Technol 105(1):95–109. doi:10.1016/S0924-0136(00)00595-1

    Article  Google Scholar 

  33. Mamalis AG, Horvath M, Branis AS, Manolakos DE (2001) Finite element simulation of chip formation in orthogonal metal cutting. J Mater Process Technol 110(1):19–27. doi:10.1016/S0924-0136(00)00861-X

    Article  Google Scholar 

  34. Baker M, Rosler J, Siemers C (2002) A finite element model of high speed metal cutting with adiabatic shearing. Comput Struct 80(5–6):495–513. doi:10.1016/S0045-7949(02)00023-8

    Article  Google Scholar 

  35. Carrino L, Giuliano G, Napolitano G (2003) Finite element simulation of orthogonal metal cutting, Crete, Greece. WIT, Southampton

    Google Scholar 

  36. Rosa PAR, Martins PAF, Atkins AG (2007) Revisiting the fundamentals of metal cutting by means of finite elements and ductile fracture mechanics. Int J Mach Tools Manuf 47(3–4):607–617. doi:10.1016/j.ijmachtools.2006.05.003

    Article  Google Scholar 

  37. Usui E, Hirota A, Masuko M (1978) Analytical prediction of three dimensional cutting process, Part I, Part II, and Part III. ASME J Eng Ind 100:222–228

    Google Scholar 

  38. Lajczok MR (1980) A study of some aspects of metal machining using the finite element method. Ph.D. Dissertation, North Carolina State University

  39. Strenkowski JS, Moon KJ (1990) Finite element prediction of chip geometry and tool/workpiece temperature distributions in orthogonal metal cutting. ASME J Eng Ind 112:313–318

    Article  Google Scholar 

  40. Moriwaki T, Sugimura N, Luan S (1993) Combined stress, material flow and heat analysis of orthogonal micromachining of copper. Ann CIRP 42:75–78. doi:10.1016/S0007-8506(07)62395-6

    Article  Google Scholar 

  41. Strenkowski JS, Shih AJ, Lin J-C (2002) An analytical finite element model for predicting three-dimensional tool forces and chip flow. Int J Mach Tools Manuf 42(6):723–731. doi:10.1016/S0890-6955(01)00162-6

    Article  Google Scholar 

  42. Athavale SM, Strenkowski JS (1997) Material damage-based model for predicting chip-breakability. J Manuf Sci Eng 119(11):675–680. doi:10.1115/1.2836808

    Article  Google Scholar 

  43. Donea J, Fasoli-Stella DP, Giuliani S (1997) Lagrangian and Eulerian finite element techniques for transient fluid structure interaction problems. Trans. SMiRT-4, paper B1/2, San Francisco, pp 15–19

  44. Özel T, Zeren E (2005) Finite element method simulation of machining of AISI 1045 steel with a round edge cutting tool. In: Proceedings of 8th CIRP International Workshop on Modeling of Machining Operations, Chemnitz, Germany May 10–11, pp 533-541

  45. Özel T, Zeren E (2007) Finite element modeling the influence of edge roundness on the stress and temperature fields induced by high-speed machining. Int J Adv Manuf Technol 35(3):255–267. doi:10.1007/s00170-006-0720-2

    Article  Google Scholar 

  46. Özel T, Altan T (2000) Process simulation using finite element method - prediction of cutting forces, tool stresses and temperatures in high-speed flat end milling. Int J Mach Tools Manuf 40(5):713–738. doi:10.1016/S0890-6955(99)00080-2

    Article  Google Scholar 

  47. Pantale O, Bacaria JL, Dalverny O, Rakotomalala R, Caperaa S (2004) 2D and 3D numerical models of metal cutting with damage effects. Comput Methods Appl Mech Eng 193(39–41 SPEC ISS):4383–4399

    Article  MATH  Google Scholar 

  48. Pednekar V, Madhavan V, Adibi-Sedeh AH (2004) Investigation of the transition from plane strain to plane stress in orthogonal metal cutting, Anaheim, CA, United States. American Society of Mechanical Engineers, New York

    Google Scholar 

  49. Itoigawa F, Childs THC, Nakamuraa T, Belluco W (2006) Effects and mechanisms in minimal quantity lubrication machining of an aluminum alloy. Wear 260(3):339–344. doi:10.1016/j.wear.2005.03.035

    Article  Google Scholar 

  50. Abaqus (2006) Theory manual. Hibbitt, Karlsson and Sorensen, Providence

    Google Scholar 

  51. Van Leer B (1977) Towards the ultimate conservative difference scheme IV. A new approach to numerical convection. J Comput Phys 23:276–299. doi:10.1016/0021-9991(77)90095-X

    Article  Google Scholar 

  52. Ko JH, Yun W-S, Cho D-W, Ehmann KF (2002) Development of a virtual machining system, part 1: approximation of the size effect for cutting force prediction. Int J Mach Tools Manuf 42(15):1595–1605. doi:10.1016/S0890-6955(02)00137-2

    Article  Google Scholar 

  53. Ranganath S, Campbell AB, Gorkiewicz DW (2007) A model to calibrate and predict forces in machining with honed cutting tools or inserts. Int J Mach Tools Manuf 47(5 SPEC ISS):820–840

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. H. Wen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adetoro, O.B., Wen, P.H. Prediction of mechanistic cutting force coefficients using ALE formulation. Int J Adv Manuf Technol 46, 79–90 (2010). https://doi.org/10.1007/s00170-009-2079-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-009-2079-7

Keywords

Navigation