Skip to main content
Log in

Inverse technique identification of material parameters using finite element and neural network computation

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Experimental identification of anisotropic behavior law is currently obtained by performing several complicated tests and a long duration of experiments. This paper describes a new technique allowing for the identification of HILL anisotropic parameters by inverse technique method based on deep drawing of a cylindrical cup. The identification approach is based on the artificial neural network (ANN) computation trained from finite element simulation. The results obtained by ANN models and by the finite element method shows a good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hambli R (2002) Prediction of burr height formation in blanking processes using neural network. Int J Mech Sci 44:2089–2102. doi:10.1016/S0020-7403(02)00168-6

    Article  MATH  Google Scholar 

  2. Chung-Feng Jeffrey Kuo Yi-Shiuan Wu (2005) Application of a Taguchi-based neural network prediction design of the film coating process for polymer blends. Int J Adv Manuf Technol 27:455–461. doi:10.1007/s00170-004-2215-3

    Google Scholar 

  3. Waszczyszyn Z, Ziemianski L (2001) Neural networks in mechanics of structures and materials—new results and prospects of applications. computers and structures 79:2261–2276

    Article  Google Scholar 

  4. Huber N, Nix DW, Gao H (2002) Identification of elastic plastic material parameters from pyramidal indentation of thin films. Proc R Soc Lond A 458:1593–1620

    Article  MATH  Google Scholar 

  5. Pernot S, Lamarque C-H (1999) Application of neural networks to the modelling of some constitutive laws. Neural Netw 12:371–392. doi:10.1016/S0893-6080(98)00115-4

    Article  Google Scholar 

  6. Tomonaru F, Genki Y (1998) Implicit constitutive modelling for viscoplasticity using neural networks. Int J Numer Methods Eng 43:195–219

    Article  Google Scholar 

  7. Furukawa T, Hoffman M (2004) Accurate cyclic plastic analysis using a neural network material model. Eng Anal Bound Elem 28:195–204. doi:10.1016/S0955-7997(03)00050-X

    Article  MATH  Google Scholar 

  8. Turk R, Perus I, Tercelj M (2004) New starting points for the prediction of tool wear in hot forging. Int J Mach Tools Manuf 44:1319–1331. doi:10.1016/j.ijmachtools.2004.04.020

    Article  Google Scholar 

  9. Muliana A, Steward R, Haj-Ali Rami M, Saxena A (2002) Artificial neural network an finite element modeling of nanoindentation tests. Metallurgical Mater Trans 33A:1939–1947. doi:10.1007/s11661-002-0027-3

    Article  Google Scholar 

  10. Abendroth M, Kuna M (2003) Determination of deformation and failure properties of ductile materials by means of the small punch test and neural networks. Comput Mater Sci 28:633–644. doi:10.1016/j.commatsci.2003.08.031

    Article  Google Scholar 

  11. Pasquinelli G (1995) Simulation of metal-forming-processes by the finite element method. Int J Plast 11:623–651. doi:10.1016/S0749-6419(94)00034-4

    Article  MATH  Google Scholar 

  12. Lamine Boubaker M, Boisse P (1998) Comportement élastoplastique anisotrope pour l’analyse numérique des coques minces en grandes transformations. Revue européenne des éléments finis 7:09–73

    Google Scholar 

  13. Khalfallah A, Bel Hadj Salah H, Dogui A (2002) Anisotropic parameter identification using inhomogeneous tensile test. Euroean Journal of Mechanics A/solids 21(6):927–942

    Article  MATH  Google Scholar 

  14. Hill R (1948) A theory of yielding and plastic flow of anisotropic metals. Proc R Soc Lond A Math Phys Sci 193:281–297. doi:10.1098/rspa.1948.0045

    Article  MATH  Google Scholar 

  15. Davalo E, Naim P (1993) Des Réseaux de Neurones. EYROLLES, Paris

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Hambli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chamekh, A., Bel Hadj Salah, H. & Hambli, R. Inverse technique identification of material parameters using finite element and neural network computation. Int J Adv Manuf Technol 44, 173–179 (2009). https://doi.org/10.1007/s00170-008-1809-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-008-1809-6

Keywords

Navigation