Skip to main content
Log in

Combined column generation and constructive heuristic for a proportionate flexible flow shop scheduling

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In a proportionate flow shop problem, jobs have to be processed through a fixed sequence of machines, and processing time for each job is equal on all machines. Such a problem has seldom been tackled. Proportionate flexible flow shop (PFFS) scheduling problems combine the properties of proportionate flow shop scheduling problems and parallel machine scheduling problems. This study presents a combined approach based on column generation (CG) for a PFFS problem with the criterion to minimize the objective of the total weighted completion time (TWCT). Minimizing TWCT in a PFFS problem significantly differs from the parallel-identical-machine scheduling problem, an optimal schedule in which jobs on each machine are in the weighted shortest processing time (WSPT) order. This combined approach adopts a CG approach to effectively handle job assignments to machines, and a constructive heuristic to obtain an optimal sequence for a single machine. Experimental results show the effectiveness of the combined approach in obtaining excellent quality solutions in a reasonable time, especially for large-scale problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shakhlevich NV, Hoogeveen H, Pinedo ML (1998) Minimizing total weighted completion time in a proportionate flow shop. J Sched 1:157–168

    Article  MATH  MathSciNet  Google Scholar 

  2. Pinedo ML (2002) Scheduling: theory, algorithms, and systems, 2nd edn. Prentice-Hall, Englewood Cliffs, NJ

    MATH  Google Scholar 

  3. Chan FTS (1996) Exploring the scheduling problems in a flow shop environment via simulation. Int J Mater Prod Technol 11(1–2):108–132

    Google Scholar 

  4. Wang H (2005) Flexible flow shop scheduling: optimum, heuristics and artificial intelligence solutions. Expert Syst 22(2):78–85

    Article  MATH  Google Scholar 

  5. Linn R, Zhang W (1999) Hybrid flow shop scheduling: a survey. Comput Ind Eng 37:57–61

    Article  Google Scholar 

  6. Edwin Cheng TC, Shakhlevich N (1999) Proportionate flow shop with controllable processing times. J Sched 2:253–265

    Article  MATH  MathSciNet  Google Scholar 

  7. Panwalkar SS, Dudek RA, Smith ML (1973) Sequence research and the industrial scheduling problem. In: Elmaghraby SE (ed) Proc. Symp. on the theory of scheduling and its applications. Springer, Berlin Heidelberg New York, pp 29–37

    Google Scholar 

  8. Hou S, Hoogeveen H (2003) The three-machine proportionate flow shop problem with unequal machine speeds. Oper Res Lett 31(3):225–231

    Article  MATH  MathSciNet  Google Scholar 

  9. Estevez-Fernandez A, Mosquera MA, Borm P, Hamers H (2006) Proportionate flow shop games. Tilburg University, Center for Economic Research

  10. Garey M, Johnson D, Sethi R (1976) The complexity of flow shop and job shop scheduling. Math Oper Res 1:117–129

    MATH  MathSciNet  Google Scholar 

  11. Pan YP, Shi LY (2005) Dual constrained single machine sequencing to minimize total weighted completion Time. IEEE Trans Autom Sci Eng 2(4):344–357

    Article  Google Scholar 

  12. Smith WE (1956) Various optimizers for single-stage production. Nav Res Log Quart 3:59–66

    Article  Google Scholar 

  13. Shiau DF, Cheng SC, Huang YM (2007) Proportionate flexible flow shop scheduling via a hybrid constructive genetic algorithm. Expert syst appl, In Press

  14. Ow PS (1985) Focused scheduling in proportionate flow shops. Manage Sci 31:852–869

    MATH  Google Scholar 

  15. Pinedo ML (1985) A note on stochastic shop models in which jobs have the same processing requirements on each machine. Manage Sci 31:840–845

    Article  MATH  MathSciNet  Google Scholar 

  16. Allahverdi A (1996) Two-machine proportionate flowshop scheduling with breakdowns to minimize maximum lateness. Comput Oper Res 23(10):909–916

    Article  MATH  MathSciNet  Google Scholar 

  17. Allahverdi A, Savsar M (2001) Stochastic proportionate flowshop scheduling with setups. Comput Ind Eng 39(3):357–369

    Article  Google Scholar 

  18. Choi BC, Yoon SH, Chung SJ (2006) Minimizing the total weighted completion time in a two-machne proportionate flow shop with different machine speeds. Int J Prod Res 44(4):715–728

    Article  MATH  Google Scholar 

  19. Choi BC, Yoon SH, Chung SJ (2007) Minimizing maximum completion time in a proportionate flow shop with one machine of different speed. Eur J Oper Res 176(2):964–974

    MATH  MathSciNet  Google Scholar 

  20. Tang LX, Xuan H, Liu J (2006) A new Lagrangian relaxation algorithm for hybrid flowshop scheduling to minimize total weighted completion time. Comput Oper Res 33:3344–3359

    Article  MATH  Google Scholar 

  21. Tozkapan A, Kırca Ö, Chung CS (2003) A branch and bound algorithm to minimize the total weighted flowtime for the two-stage assembly scheduling problem. Comput Oper Res 30(2):309–320

    Article  MATH  MathSciNet  Google Scholar 

  22. Moursli O, Pochet Y (2000) A branch-and-bound algorithm for the hybrid flow shop. Int J Prod Econ 64:113–125

    Article  Google Scholar 

  23. Gupta JND, Hariri AMA, Potts CN (1997) Scheduling a two-stage hybrid flow shop with parallel machines at the first stage. Ann Oper Res 69:171–191

    Article  MATH  Google Scholar 

  24. Oğuz C, Fikret Ercan M, Edwin Cheng TC, Fung YF (2003) Heuristic algorithms for multiprocessor task scheduling in a two-stage hybrid flow-shop. Eur J Oper Res 149:390–403

    Article  MATH  Google Scholar 

  25. Kyparisis G, Koulamas C (2005) A note on makespan minimization in two-stage flexible flow shops with uniform machines. Eur J Oper Res, In Press

  26. Gupta JND, Kruger K, Lauff V, Werner F, Sotskov YN (2002) Heuristics for hybrid flow shops with controllable processing times and assignable due dates. Comput Oper Res 29(10):1417–1439

    Article  MATH  Google Scholar 

  27. Yang Y, Kreipl S, Pinedo M (2000) Heuristics for minimizing total weighted tardiness in flexible flow shops. J Sched 3:71–88

    Article  MathSciNet  Google Scholar 

  28. Şerifoğlu FS, Ulusoy G (2004) Multiprocessor task scheduling in multistage hybrid flow-shops: a genetic algorithm approach. J Oper Res Soc 55(5):504–512

    Article  MATH  Google Scholar 

  29. Oğuz C, Ercan M (2005) A genetic algorithm for hybrid flow-shop scheduling with multiprocessor tasks. J Sched 8(4):323–351

    Article  MATH  MathSciNet  Google Scholar 

  30. Noorul Hag A, Ravindran D, Aruna V, Nithiya S (2004) A hybridization of metaheuristics for flow shop scheduling. Int J Adv Manufact Technol 24:376–380

    Article  Google Scholar 

  31. Wang L, Zheng DZ (2003) An effective hybrid heuristic for flow shop scheduling. Int J Adv Manufact Technol 21(1):38–44

    Article  Google Scholar 

  32. Van den Akker JM, Hoogeveen JA, Van De Velde SL (1999) Parallel machine scheduling by column generation. Oper Res 47:862–872

    MATH  MathSciNet  Google Scholar 

  33. Chen ZL, Powell WB (1999) Solving parallel machine scheduling problems by column generation. INFORMS J Comput 11(1):78–94

    MATH  MathSciNet  Google Scholar 

  34. Lee CY, Chen ZL (2000) Scheduling jobs and maintenance activities on parallel machines. Nav Res Log 47(2):145–165

    Article  MATH  MathSciNet  Google Scholar 

  35. Van den Akker JM, Hoogeveen JA, Van De Velde SL (2002) Combining column generation and Lagrangean relaxation to solve a single-machine common due date problem. INFORMS J Comput 14(1):37–51

    Article  MathSciNet  Google Scholar 

  36. Lübbecke ME, Desrosiers J (2005) Selected topics in column generation. Oper Res 53(6):1007–1023

    Article  MathSciNet  MATH  Google Scholar 

  37. Glover F (1989) Tabu search - Part I. ORSA J Comput 1:190–206

    MATH  MathSciNet  Google Scholar 

  38. Barnes JW, Laguna M (1993) Solving the multiple-machine weighted flow time problem using tabu search. IIE Trans 25:121–128

    Article  Google Scholar 

  39. Ben-Daya M, Al-Fawzan M (1998) A tabu search approach for the flow shop scheduling problem. Eur J Oper Res 109:88–95

    Article  MATH  Google Scholar 

  40. Bilge Ü, Kiraç F, Kurtulan M, Pekgün P (2004) A tabu search algorithm for parallel machine total tardiness problem. Comput Oper Res 31:397–414

    Article  MATH  Google Scholar 

  41. Kim CO, Shin HJ (2003) Scheduling jobs on parallel machines: a restricted tabu search approach. Int J Adv Manufact Technol 22:278–287

    Article  Google Scholar 

  42. Dorn J, Girsh M, Skele G, Slany W (1996) Comparison of iterative improvement techniques for schedule optimization. Eur J Oper Res 94:349–361

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yueh-Min Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, YM., Shiau, DF. Combined column generation and constructive heuristic for a proportionate flexible flow shop scheduling. Int J Adv Manuf Technol 38, 691–704 (2008). https://doi.org/10.1007/s00170-007-1130-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-007-1130-9

Keywords

Navigation