Skip to main content
Log in

A literature review, classification and simple meta-analysis on scheduling of batch processors in semiconductor

  • Original Article
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In this paper, we present a literature review, classification schemes and a simple meta-analysis for scheduling of batch processors (SBP) research in semiconductor manufacturing (SM). This review is based on a study of journals and web-based documents/articles, which include conference materials, lecture notes in computer science, working papers, etc. There are 98 articles published in various publication outlets between 1986 and October 2004. Based on the literature review carried out and the nature of SBP research observed in SM, we have introduced two classification schemes to systematically organize the published articles. The first classification scheme is based on the problem configurations of SBP research in SM and the second one is based on the solution methodology followed by the researchers. These classification schemes indicate that there is much research scope on SBP research in SM. Furthermore, a simple meta-analysis is carried out to enhance understanding on the development and evolution of SBP research in SM and to identify potential research areas for further research and for improvement. The results show that there is an increasing trend in SBP research in SM. A comprehensive list of references is presented. This study is expected to provide a source of reference for other researchers (or readers), who are interested in SBP research particularly in SM and help stimulate further interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sen T, Sulek JM, Dileepan P (2003) Static scheduling research to minimize weighted and un-weighted tardiness: A sate-of-the-art survey. Int J Prod Econ 83:1–12

    Article  Google Scholar 

  2. Allahverdi A, Gupta JND, Aldowaisan T (1999) A review of scheduling research involving setup considerations. Omega, Int J Manage Sci 27:219–239

    Google Scholar 

  3. Sox CR, Jackson PL, Bowman A, Muckstadt JA (1999) A review of the stochastic lot scheduling problem. Int J Prod Econ 62:181–200

    Article  Google Scholar 

  4. Drexl A, Kimms A (1997) Lot sizing and scheduling – survey and extensions. Eur J Oper Res 99:221–235

    Article  MATH  Google Scholar 

  5. Potts CN, Van Wassenhove (1992) Integrating scheduling with batching and lot-sizing: A review of algorithms and complexity. J Oper Res Soc 43(5):395–406

    Article  MATH  Google Scholar 

  6. Albers S, Brucker P (1993) The complexity of one-machine batching problem. Discret Appl Math 47:87–107

    Article  MATH  MathSciNet  Google Scholar 

  7. Webster S, Baker KR (1995) Scheduling groups of jobs on a single machine. Oper Res 43(4):692–703

    MATH  MathSciNet  Google Scholar 

  8. Brucker P, Gladky A, Hoogeveen H, Kovalyov MV, Potts CN, Tautenhahn T, Van De Velde SL (1998) Scheduling a batching machine. J Schedul 1:31–54

    Article  MATH  MathSciNet  Google Scholar 

  9. Potts CN, Kovalyov MY (2000) Scheduling with batching : A review. Eur J Oper Res 120:228–249

    Article  MATH  MathSciNet  Google Scholar 

  10. Baptiste P (2000) Batching identical jobs. Math Methods Oper Res 52:355–367

    Article  MATH  MathSciNet  Google Scholar 

  11. Mathirajan M, Sivakumar AI, Chandru V (2004a) Scheduling algorithms for heterogeneous batch processors with incompatible job families. J Intell Manuf 15:787–803

    Article  Google Scholar 

  12. Yuan JJ, Liu ZH, Ng CT, Cheng TCE (2004) The unbounded single machine parallel batch scheduling problem with family jobs and release dates to minimize makespan. Theor Comput Sci 320(2–3):199–213

    Google Scholar 

  13. Ram B, Patel G (1998) Modeling furnace operations using simulation and heuristics. Proc 1998 winter simulation conference, pp 957–963

  14. Zee DJ van der, Van Harten A, Schuur PC (1997) Dynamic job assignment heuristics for multi-server batch operations – A cost based approach. Int J Prod Res 35(11):3063–3093

    Article  MATH  Google Scholar 

  15. Fanti MP, Maione B, Piscitelli G, Turchiano B (1996) Heuristic scheduling of jobs on a multi-product batch processing machine. Int J Prod Res 34(8):2163–2186

    MATH  Google Scholar 

  16. Hung Y-F, Wang Q-Z (1997) A new formulation technique for alternative material planning-An approach for semiconductor bin allocation planning. Comput Ind Eng 32(2):281–297

    Article  MathSciNet  Google Scholar 

  17. Uzsoy R, Lee C-Y, Martin-Vega LA (1992a) A review of production planning and scheduling models in the semiconductor industry, part I: system characteristics, performance evaluation and prod planning. IIE Trans 24(4):47–60

    Google Scholar 

  18. Uzsoy R, Lee C-Y, Martin-Vega LA (1994) A review of prod planning and scheduling models in the semiconductor industry, part II: shop floor control. IIE Trans Schedul Logist 26(5):44–55

    Google Scholar 

  19. Kumar PR (1994) Scheduling semiconductor manufacturing plants. IEEE Control Syst pp 33–40

  20. Avramidis AN, Healy KJ, Uzsoy R (1998) Control of a batch processing machine: a computational approach. Int J Prod Res 36(11):3167–3181

    Article  MATH  Google Scholar 

  21. Hung Y-F (1998) Scheduling of mask shop E-beam writers. IEEE Trans Semicond Manuf 11(1):165–172

    Article  Google Scholar 

  22. Sung CS, Kim YH (2002) Minimizing makespan in a two-machine flow-shop with dynamic arrivals allowed. Comput Oper Res 29:275–294

    Article  MATH  MathSciNet  Google Scholar 

  23. Huang S-C, Lin JT (1998) An interactive scheduler for a wafer probe centre in semiconductor manufacturing. Int J Prod Res 36(7):1883–1900

    Article  MATH  Google Scholar 

  24. Uzsoy R (1995) Scheduling batch processing machine with incompatible job families. Int J Prod Res 33(10):2685–2708

    MATH  Google Scholar 

  25. Lee C-Y, Uzsoy R, Martin-Vego LA (1992) Efficient algorithms for scheduling semiconductor burn-in operations. Oper Research 40(4):764–775

    MATH  Google Scholar 

  26. Forster JA (2001) Tutorial: burn-in sockets for chip-scale packages, chip scale review. http://www.chipscalereview.com/issues/0401/tutorial_01.html

  27. Azizoglu M, Webster S (2000) Scheduling a batch processing machine with non-identical job-sizes. Int J Prod Res 38(10):2173–2184

    Article  MATH  Google Scholar 

  28. Ikura Y, Gimple M (1986) Scheduling algorithms for a single batch processing machine. Oper Res Lette 5:61–65

    Article  MATH  MathSciNet  Google Scholar 

  29. Ahmadi JH, Ahmadi RH, Dasu S, Tang CS (1992) Batching and scheduling jobs on batch and discrete processors. Oper Res 39(4):750–763

    MathSciNet  Google Scholar 

  30. Balasubramanian H, Monch L, Fowler J, Pfund M (2004) Genetic algorithm based scheduling of parallel batch machines with incompatible job families to minimize total weighted tardiness. Int J Prod Res 42(8):1621–1638

    Article  MATH  Google Scholar 

  31. Bar-Noy A, Guha S, Katz Y, Naor J, Schieber B, Shachnai H (2002) Throughput maximization of real-time scheduling with batching. Proc – 13th Annual ACM-SIAM Symposium on Discrete Algorithms, pp 742–751.

  32. Devpura A, Fowler JW, Carlyle MW, Perez I (2000) Minimizing total weighted tardiness on a single batch process machine with incompatible job families. Proc symposium on Operations Research, Dresden, Germany, pp 366–371

  33. Dobson G, Nambimadom RS (2001) The batch loading and scheduling problem. Oper Res 49 (1):52–65

    Article  MathSciNet  Google Scholar 

  34. Jolai GF (2005) Minimizing number of tardy jobs on a batch processing machine with incompatible job families. Eur J Oper Res 162(1):184–190

    Article  MATH  MathSciNet  Google Scholar 

  35. Kim H-U, Kim Y-D, Kim J-G (2000) Batching and scheduling at a batch processing workstation in a semiconductor fabrication facility producing multiple product types with distinct due dates. Proc International Conference on Modeling and Analysis of Semiconductor Manuf, pp 151–156

  36. Kurz ME (2002) Using genetic algorithms to minimizing total weighted tardiness on parallel batch-processing machine. Algebra and Discrete Math Seminar Fall 2002

  37. Kurz ME (2003) On the structure of optimal-schedules for minimizing total weighted tardiness on parallel batch-processing machines. Proc 10th Industrial Eng Conference, Portland, OR

  38. Mehta SV, Uzsoy R (1998) Minimizing total tardiness on a batch processing machine with incompatible job families. IIE Trans 30:165–178

    Article  Google Scholar 

  39. Monch L, Balasubramanian H, Fowler J, Pfund M (2002) Minimizing total weighted tardiness on parallel batch machines using genetic algorithms. Proce International Symposium on Oper Research. Klagenfurt, Austria, pp 205–211

  40. Monch L, Balasubramanian H, Fowler J, Pfund M (2005) Heuristic scheduling of jobs on parallel batch machines with incompatible job families and unequal ready times. Comput Oper Res 32(11):2731–2750

    Article  Google Scholar 

  41. Morad N, Zalzala AMS (1996) A gentic-based approach to the formation of manaufacturing cells and batch scheduling. Proc IEEE International Conference on Evolutionary Computation, pp 485–490, Nagoya, Japan

  42. Perez IC, Fowler JW, Carlyle WM (2005) Minimizing total weighted tardiness on a single batch process machine with incompatible job families. Comput Oper Res 32(2):327–341

    MATH  MathSciNet  Google Scholar 

  43. Qi X, Tu F (1999) Earliness and tardiness scheduling problems on a batch processor. Discret Appl Math pp 131–145

  44. Skinner G, Mason SJ (2002) A genetic algorithm for scheduling parallel batch processing machines. Proc International Conference on Modeling and Analysis of Semiconductor Manuf, pp 270–275

  45. Akcali E, Uzsoy R, Hiscock DG, Moser AL, Teyner T (2000) Alternative loading and dispatching policies for furnace operations in semiconductor manufacturing: A comparison by simulation. Proc 2000 Winter Simulation Conference

    Google Scholar 

  46. Duenyas I, Neale JJ (1997) Stochastic scheduling of batch processing machine with incompatible job families. Ann Oper Res 70:191–220

    Article  MATH  MathSciNet  Google Scholar 

  47. Fowler JW, Phillips DT, Hogg GL (1992) Real time control of multi-product bulk service semiconductor manufacturing processes. IEEE Trans Semicond Manuf 5(2):158–163

    Article  Google Scholar 

  48. Fowler JW, Hogg GL, Phillips DT (2000) Control of multi product bulk server diffusion/oxidation processes. Part 2: multiple servers, IIE Trans 32:167–176

    Google Scholar 

  49. Fowler JW, Phojanamongkolkij N, Cochran JK, Montgomery DC (2002) Optimal batching in a wafer fabrication facility using a multi-product G/G/c model with batch processing. Int J Prod Res 40(2):275–292

    Article  MATH  Google Scholar 

  50. Glassey CR, Weng WW (1991) Dynamic batching heuristic for simultaneous processing. IEEE Trans Semicond Manuf 4(2):77–82

    Article  Google Scholar 

  51. Monch L, Habenicht I (2003) Simulation based assessment of batching heuristics in semiconductor manufacturing. Proc Winter Simulation Conference 2003, pp 1338–1345

  52. Phojanamongkolkij N, Fowler JW, Cochran JK (2002) Determining operating criterion of batch processing operations for wafer fabrication. J Manuf Syst 21(5):363–379

    Article  Google Scholar 

  53. Sung CS, Choung YI (1999) A neural network approach for batching decisions in wafer fabrication. Int J Prod Res 37(13):3101–3114

    Article  MATH  Google Scholar 

  54. Weng WW, Leachman RC (1993) An improved methodology for real-time production decisions at batch process workstations. IEEE Trans Semicond Manuf 6(3):219–225

    Article  Google Scholar 

  55. Kim B, Kim S (2002) Application of Genetic Algorithms for scheduling batch-discrete production system. Prod Plan Control 13(2):155–165

    Article  Google Scholar 

  56. Neale JJ, Duenyas I (2000) Control of manufacturing networks which contain a batch processing machine. IIE Trans 32:1027–1041

    Article  Google Scholar 

  57. Su L-H (2003) A hybrid two-stage flow-shop with limited waiting time constraints. Comput Ind Eng 44:409–424

    Article  Google Scholar 

  58. Sung CS, Kim YH (2003) Minimizing due date related performance measures on two batch processing machines. Eur J Oper Res 147:644–656

    Article  MATH  MathSciNet  Google Scholar 

  59. Sung CS, Min JI (2001) Scheduling in a two-machine flowshop with batch processing machine(s) for earliness/tardiness measure under a common due date. Eur J Oper Res 131:95–106

    Article  MATH  MathSciNet  Google Scholar 

  60. Sung CS, Yoon SH (1997) Minimizing maximum completion time in a two-batch-processing-machine flow shops with dynamic arrivals allowed. Eng Optim 28(3):231–243

    Google Scholar 

  61. Sung CS, Kim YH, Yoon SH (2000) A problem reduction and decomposition approach for scheduling for a flow shop of batch processing machines. Eur J Oper Res 121:179–192

    Article  MATH  MathSciNet  Google Scholar 

  62. Gurnani H, Anupindi R, Akella R (1991) Control of batch processing systems in semiconductor wafer fabrication facilities. IEEE Trans Semicond Manuf 5:319–328

    Article  Google Scholar 

  63. Kim Y-D, Lee D-H, Kim J-U (1998) A Simulation study of on lot release control, Mask scheduling and batch scheduling in semiconductor wafer fabrication facilities. J Manuf Syst 17(2):107–117

    Google Scholar 

  64. Robinson JK, Fowler JW, Bard JF (1995) The use of upstream and downstream information in scheduling batch operations. Int J Prod Res 33(7):1849–1869

    MATH  Google Scholar 

  65. Solomon L, Fowler JW, Pfund M, Jensen PH (2002) The inclusion of future arrivals and downstream setups into wafer fabrication batch processing decisions. J Electron Manuf 11(2):149–159

    Article  Google Scholar 

  66. Cigolini R, Perona M, Portioli A, Zambelli T (2002) A new dynamic look-ahead scheduling procedure for batching machines. J Schedul 5(2):185–204

    Article  MATH  MathSciNet  Google Scholar 

  67. Mason SJ, Oey K (2003) Scheduling complex job shops using disjunctive graphs: a cycle elimination procedure. Int J Prod Res 41(5):981–994

    Article  Google Scholar 

  68. Mason SJ, Fowler JW, Carlyle WM (2002) A modified shifting bottleneck heuristic for minimizing the total weighted tardiness. J Schedul 5(3):247–262

    Article  MATH  Google Scholar 

  69. Oey K, Mason SJ (2001) Scheduling batch processing machines in complex job shops. Proc 2001 Winter Simulation Conference, pp 1200–1207

  70. Azizoglu M, Webster S (2001) Scheduling a batch processing machine with incompatible job families. Comput Ind Eng 39:325–335

    Article  Google Scholar 

  71. Boudhar M (2001) Static scheduling on a single batch processing machine with split compatibility graphs. Cahiers Lab. Leibniz-IMA Grenoble28

  72. Boudhar M (2002) Scheduling on a single batch processing machine with bipartite compatibility graphs. http://www-leibniz.imag.fr/LesCahiers/Cahier45/CLLeib45.pdf

  73. Boudhar M (2003) Dynamic scheduling on a single batch processing machine with split compatibility graphs, J Math Model Algorithm 2:17–35

    Google Scholar 

  74. Cai M-C, Deng X, Feng H, Li G, Liu G (2002) A PTAS for minimizing total completion time of bounded batch scheduling. In: Cook WJ, Schulz AS (eds) IPCO’2002, LNCS 2337:304–314, Springer, Berlin Heidelberg New York

  75. Chandra P, Gupta S (1992) An analysis of a last-station-bottleneck semiconductor packaging line. Research Working Paper: 92-10-13, Faculty of Management, McGill University

    Google Scholar 

  76. Chandru V, Lee C-Y, Uzsoy R (1993a) Minimizing total completion time on a batch processing machines. Int J Prod Res 31(9):2097–2121

    Google Scholar 

  77. Chandru V, Lee C-Y, Uzsoy R (1993b) Minimizing total completion time on a batch processing machine with job families. Oper Res Lett 13:61–65

    Article  MATH  MathSciNet  Google Scholar 

  78. Chang P-C, Wang H-M (2004) A heuristic for a batch processing machine scheduled to minimize total completion time with non-identical job sizes. Int J Adv Manuf Technol, Published online: 5 May 2004

  79. Chen B, Deng X, Zang W (2004) On-line scheduling a batch processing system to minimize total weighted job completion time. J Comb Optim 8:85–95

    Article  MATH  MathSciNet  Google Scholar 

  80. Cheng TCE, Liu Z, Yu W (2001) Scheduling jobs with release dates and deadlines on a batch processing machine. IIE Trans 33:685–690

    Article  Google Scholar 

  81. Cheraghi SH, Vishwaram V, Krishnan KK (2002) Scheduling a single batch-processing machine with disagreeable ready times and due dates. Int J Ind Eng

  82. Dang C, Kang L (2004) Batch-processing scheduling with setup times. J Comb Optim 8:137–146

    Article  MATH  MathSciNet  Google Scholar 

  83. Deng X, Feng H, Zhang P, Zhu H (2001) A polynomial time approximation scheme for minimizing total completion time of unbounded batch scheduling. LNCS 2223:26–35

    MATH  Google Scholar 

  84. Deng X, Feng H, Li G, Liu G (2002) A PTAS for minimizing total completion time of bounded batch scheduling. Int J Found Comput Sci 13(6):817–827

    Article  MATH  Google Scholar 

  85. Deng X, Poon CK, Zhang Y (2003) Approximation algorithms in batch processing. J Comb Optim 7:247–257

    Article  MATH  MathSciNet  Google Scholar 

  86. Dupont L, Dhaenens-Flipo C (2002) Minimizing the makespan on a batch machine with non-identical job sizes: an exact procedure. Comput Oper Res 29:807–819

    Article  MATH  MathSciNet  Google Scholar 

  87. Dupont L, Jolai GF (1997a) An efficient heuristic for single batch processing machine problem with total completion time criteria. Proc (CD ROM) second International Franch-Quebec Congress of Industrial Engineering, Albi, France. Paper No. 36

  88. Dupont L, Jolai GF (1997b) A branch and bound algorithm for minimizing mean flow time on a single batch processing machine. Int J Ind Eng 4(3):197–203

    Google Scholar 

  89. Dupont L, Jolai GF (1998) Minimizing makespan on a single batch processing machine with non-identical job sizes. Eur J Automat 32:431–40

    Google Scholar 

  90. Hochbaum D, Landy D (1994) Scheduling with batching: minimizing the weighted number of tardy jobs. Oper Res Lett 16(2):79–86

    Article  MATH  MathSciNet  Google Scholar 

  91. Hochbaum DS, Landy D (1997) Scheduling semiconductor burn-in operations to minimize total flow time. Oper Res 45(6):874–885

    MATH  Google Scholar 

  92. Jolai GF (2001) A dynamic programming approach for single-batch processing machine problem. Proc First National Industrial Eng Conference, Iran, pp 11–19. http://ien.sharif.ac.ir/∼or/papers/niec1.htm

  93. Jolai GF, Dupont L (1998) Minimizing mean flow time criteria on a single batch processing machine with non-identical job sizes. Int J Prod Econ 55:273–280

    Article  Google Scholar 

  94. Kempf KG, Uzsoy R, Wang C-S (1998) Scheduling a single batch processing machine with secondary resource constraints. J Manuf Syst 17(1):37–51

    Article  Google Scholar 

  95. Kubiak W, Jolai GF (1997) Minimizing earliness/tardiness criteria on a batch processing machines with job-families. Proc second Annual International Conference on Industrial Eng 2:785–790

    Google Scholar 

  96. Lee C-Y, Uzsoy R (1992) A new dynamic programming algorithm for the parallel machine total weighted completion time problem. Oper Res Lett 11:73–75

    Article  MATH  MathSciNet  Google Scholar 

  97. Lee C-Y, Uzsoy R (1999) Minimizing makespan on a single batch processing machine with dynamic job arrivals. Int J Prod Res 37(1):219–236

    Article  MATH  Google Scholar 

  98. Li C-L, Lee C-Y (1997) Scheduling with agreeable release times and due dates on a batch processing machine. Eur J Oper Res 96:564–569

    Article  MATH  Google Scholar 

  99. Liu Z, Yu W (2000) Scheduling one batch processor subject to job release dates. Discret Appl Math 105:129–136

    Article  MATH  Google Scholar 

  100. Mathirajan M, Sivakumar AI, Kalaivani P (2004) A few variants of simulated annealing for scheduling burn-in oven with non-identical job sizes. Int J Appl Manage Technol 2(2):117–138

    Google Scholar 

  101. Melouk S, Damodaran P, Chang P-Y (2004) Minimizing makespan for single machine batch processing with non-identical job sizes using simulated annealing. Int J Prod Econ 87(2):141–147

    Article  Google Scholar 

  102. Poon CK, Zhang P (2004) Minimizing makespan in batch machine scheduling. Algorithmica 39:155–174

    Article  MATH  MathSciNet  Google Scholar 

  103. Sung CS, Choung YI (2000) Minimizing makespan on a single burn-in oven in semiconductor manufacturing. Eur J Oper Res 120:559–574

    Article  MATH  Google Scholar 

  104. Sung CS, Choung YI, Fowler J (2002a) Heuristic algorithm for minimizing earliness-tardiness on a single burn-in oven in semiconductor manufacturing. Proc International Conference on Modeling and Analysis of Semiconductor Manuf, pp 217–222

  105. Sung CS, Choung YI, Hong JM, Kim YH (2002b) Minimizing makespan on a single burn-in oven with job families and dynamic job arrivals. Comput Oper Res 29:995–1007

    Article  MATH  MathSciNet  Google Scholar 

  106. Uzsoy R (1994) Scheduling a single batch processing machine with non-identical job sizes. Int J Prod Res 32(7):1615–1635

    MATH  Google Scholar 

  107. Uzsoy R, Yang Y (1997) Minimizing total weighted completion time on a single batch processing machine. Prod and Oper Manage 6(1):57–73

    Google Scholar 

  108. Uzsoy R, Martin-Vega LA, Lee C-Y, Leonard PA (1991) Production Scheduling Algorithms for a Semiconductor Test Facility. IEEE Trans Semicond Manuf 4(4):270–280

    Article  Google Scholar 

  109. Wang C-S, Uzsoy R (2002) A genetic algorithm to minimize lateness on a batch processing machine. Comput Oper Res 29:1621–1640

    Article  MathSciNet  Google Scholar 

  110. Zhang G, Cai X, Lee C-Y, Wong CK (2001a) Minimizing makespan on a single batch processing machine with non-identical job sizes. Naval Res Logist 48:226–240

    Article  MATH  MathSciNet  Google Scholar 

  111. Zhang G, Cai X, Wong CK (2001b) On-line algorithms for minimizing makespan on batch processing machines. Naval Res Logist 48:241–258

    Article  MATH  MathSciNet  Google Scholar 

  112. Koole G, Righter R (2001) A stochastic batching and scheduling problem. Probab Eng Inform Sci 15:465–479

    MATH  MathSciNet  Google Scholar 

  113. Bhatnagar R, Chandra P, Loulou R, Qiu R (1999) Order release and product mix coordination in a complex PCB manufacturing line with batch processors. Int J Flex Manuf Syst 11:327–351

    Article  Google Scholar 

  114. Chandra P, Gupta S (1997) Managing batch processors to reduce lead-time in a semiconductor packaging line. Int J Prod Res 35(3):611–633

    Article  MATH  Google Scholar 

  115. Potts CN, Strusevich VA, Tautenhahn T (2001) Scheduling batches with simultaneous job processing for two-machine shop problems. J Schedul 4(1):25–51

    Article  MATH  MathSciNet  Google Scholar 

  116. Uzsoy R, Lee C-Y, Martin-Vega LA (1992b) Scheduling semiconductor test operations: minimizing maximum lateness and number of tardy jobs on a single machine. Naval Res Logist 39:369–388

    MATH  Google Scholar 

  117. Wang J-T, Chern M-S, Yang D-L (2001) A two machine multi-family flow shop scheduling problem with two batch processors. J Chin Inst Ind Eng 18(3):77–85

    Google Scholar 

  118. Yang DL, Chern MS, Wang JT (1998) A two-machine multi-family flowshop batch processing scheduling problem with the total completion time case. Int J Oper Quantit Manage 4:315–325.

    Google Scholar 

  119. Neufville RD (1990) Appl systems analysis: engineering planning and technology management. McGraw-Hill, New York

    Google Scholar 

  120. Meier RC, William TN, Harold LP (1969) Simulation in business and economics. Prentice Hall, New York

  121. Ball M, Magazine M (1981) The design and analysis of heuristics. Networks 11:215–219

    Google Scholar 

  122. Silver EA, Vidal RV, de Werra D (1980) A tutorial on heuristic methods. Eur J Oper Res 5:153–162

    Article  MathSciNet  Google Scholar 

  123. Zanakis SH, Evans JR, Vazacopoulos AA (1989) Heuristic methods and applications: a categorized surveys. Eur J Oper Res 43:88–110

    Article  MATH  MathSciNet  Google Scholar 

  124. Suresh V, Chaudhuri D (1993) Dynamic scheduling – a survey of research. Int J Prod Econ 32:53–63

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mathirajan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mathirajan, M., Sivakumar, A. A literature review, classification and simple meta-analysis on scheduling of batch processors in semiconductor. Int J Adv Manuf Technol 29, 990–1001 (2006). https://doi.org/10.1007/s00170-005-2585-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-005-2585-1

Keywords

Navigation