Skip to main content
Log in

Computational approach to contact fatigue damage initiation analysis of gear teeth flanks

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The paper describes a general computational model for the simulation of contact fatigue-damage initiation in the contact area of meshing gears. The model considers the continuum mechanics approach, where the use of homogenous and elastic material is assumed. The stress field in the contact area and the relationship between the cyclic contact loading conditions and observed contact points on the tooth flank are simulated with moving Hertzian contact pressure in the framework of the finite element method analysis. An equivalent model of Hertzian contact between two cylinders is used for evaluating contact conditions at the major point of contact of meshing gears. For the purpose of fatigue-damage analysis, the model, which is used for prediction of the number of loading cycles required for initial fatigue damage to appear, is based on the Coffin-Manson relationship between deformations and loading cycles. On the basis of computational results, and with consideration of some particular geometrical and material parameters, the initiation life of contacting spur gears in regard to contact fatigue damage can be estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ANSI/AGMA, American National Standards (2001) Appearance of gear teeth: terminology of wear and failure. ANSI/AGMA 2001-B58, AGMA, Alexandria, VA

  2. Aberšek B, Flašker J, Glodež S (2004) Review of mathematical and experimental models for determination of service life of gears. Eng Fract Mech (http://www.sciencedirect.com), Eng Frach Mech 71(4–6):439–453

  3. Benedetti M, Fontanari V, Höhn BR, Oster P, Tobie T (2002) Influence of shot peening on bending tooth fatigue limit of case hardened gears. Int J Fatigue 24:1127–1136

    Article  Google Scholar 

  4. Bhattacharya B, Ellingwood B (1998) Continuum damage mechanics analysis of fatigue crack initiation. Int J Fatigue 20(9):631–639

    Article  Google Scholar 

  5. Cheng W, Cheng HS, Mura T, Keer LM (1994) Micromechanics modeling of crack initiation under contact fatigue. J Tribol Trans ASME 116:2–48

    Article  Google Scholar 

  6. DIN 3990 (1987) Calculation of load capacity of cylindrical gears. German standard, Beuth, Berlin

    Google Scholar 

  7. Dudley DW (1996) Fatigue and life prediction of gears. Fatigue Strength Predict Analys 19:345–354

    Google Scholar 

  8. Dudley DW (1994) Handbook of practical gear design. Lancaster, Basel

    Google Scholar 

  9. Ekberg A, Bjarnehed H, Lunden R (1995) A fatigue life model for general rolling contact with application to wheel/rail damage. Fatigue Fract Eng Mater Struct 18(10):1189–1199

    Google Scholar 

  10. Flašker J, Fajdiga G, Glodež S, Hellen TK (2001) Numerical simulation of surface pitting due to contact loading. Int J Fatigue 23:599–605

    Article  Google Scholar 

  11. Fatemi A, Yang L (1998) Cumulative fatigue damage and life prediction theories: a survey of the state of the art for homogeneous materials. Int J Fatigue 20(1):9–34

    Article  Google Scholar 

  12. Glodež S, Aberšek B, Flašker J, Ren Z (2003) Evaluation of the service life of gears in regard to surface pitting. Eng Fract Mech (http://www.sciencedirect.com), Eng Frach Mech 71(4–6):429–438

  13. Glodež S, Šraml M, Kramberger J (2002) A computational model for determination of service life of gears. Int J Fatigue 24:1013–1020

    Article  MATH  Google Scholar 

  14. Glodež S, Flašker J, Ren Z (1997) A new model for the numerical determination of pitting resistance of gear teeth flanks. Fatigue Fract Eng Mater Struct 20(1):71–83

    Google Scholar 

  15. Glodež S, Ren Z, Flašker J (1998) Simulation of surface pitting due to contact lodging. Int J Numer Methods Eng 43(1):33–50

    Article  MATH  Google Scholar 

  16. Glodež S, Ren Z, Flašker J (1999) Surface fatigue of gear teeth flanks. Comput Struct 73:475–483

    Article  MATH  Google Scholar 

  17. Glodež S, Ren Z, Fajdiga G (2001) Computational modelling of the surface fatigue crack growth on gear teeth flanks. Commun Numer Methods Eng 17(8):529–541

    Article  MATH  Google Scholar 

  18. Haiba M, Barton DC, Brooks PC, Levesly MC (2003) The development of an optimisation algorithm based on fatigue life. Int J Fatigue (http://www.sciencedirect.com) Int J Fatigue 25(4):299-310

    Google Scholar 

  19. Johnson KL (1985) Contact mechanics, Cambridge University Press, Cambridge

    MATH  Google Scholar 

  20. Msc/Corporation (1999) MSC/FATIGUE Quick Start Guide, Version 8, MacNeal-Schwendler, Los Angeles

    Google Scholar 

  21. Mura T, Nakasone Y (1990) A theory of fatigue crack initiation in solids. J Appl Mech 57:1–6

    Google Scholar 

  22. Ren Z, Glodež S, Flašker J (1999) Influence of inclusion interfaces on surface pitting. Technol Law Insur 4:137–144

    Article  Google Scholar 

  23. Schijve J (2003) Fatigue of structures and materials in the 20th century and the state of the art. Int J Fatigue http://www.sciencedirect.com) Int J Fatigue 25(8):679-702

  24. Šraml M, Flašker J, Potrc I (2003) Numerical procedure for predicting the rolling contact fatigue crack initiation. Int J Fatigue 25:585–595

    Article  MATH  Google Scholar 

  25. Zahavi E, Torbilo V (1996) Fatigue design-life expectancy of machine parts, CRC, Boca Raton, FL

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Šraml.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Šraml, M., Flašker, J. Computational approach to contact fatigue damage initiation analysis of gear teeth flanks. Int J Adv Manuf Technol 31, 1066–1075 (2007). https://doi.org/10.1007/s00170-005-0296-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-005-0296-2

Keywords

Navigation