Skip to main content
Log in

Weighted-loss-function control charts

  • Original Article
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This article proposes a single weighted-loss-function chart (WL chart) for monitoring the process mean and variance simultaneously in statistical process control (SPC). The weights of the losses due to mean shift and variance shift in the loss function are balanced through a weighting factor λ, so that the WL chart is considerably more effective than the unadjusted loss function chart, the joint \(\overline{X}\)&S charts and many other charts as well. The improvement in detection effectiveness will directly lead to the reduction of a number of defects in the manufacturing process when out-of-control cases occur. Moreover, the WL chart provides a platform for the further development of the Cusum chart, runs rule, or adaptive chart for monitoring both process mean and variance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Montgomery DC (2001) Introduction to statistical quality control. Wiley, New York

  2. Grabov P, Ingman D (1996) Adaptive control limits for bivariate process monitoring. J Qual Technol 28:320–330

    Google Scholar 

  3. Reynolds MR, Glosh BK (1981) Designing control charts for means and variances. In: Proceedings of the ASQC Quality Congress Transactions, American Society for Quality Control, San Francisco, CA, pp 400–407

    Google Scholar 

  4. Domangue R, Patch SC (1991) Some omnibus exponentially weighted moving average statistical process monitoring schemes. Technometrics 33:299–313

    Article  MATH  Google Scholar 

  5. Sullivan JH, Woodall WH (1996) A control chart for preliminary analysis of individual observations. J Qual Technol 28:265–278

    Google Scholar 

  6. Amin RW, Wolff H, Besenfelder W, Baxley R (1999) EWMA control charts for the smallest and largest observations. J Qual Technol 31:189–206

    Google Scholar 

  7. Chen G, Cheng SW, Xie HS (2001) Monitoring process mean and variability with one EWMA chart. J Qual Technol 33:223–233

    Google Scholar 

  8. Cyrus D (1997) Statistical aspects of quality control. Academic Press, London

    Google Scholar 

  9. Spiring FA, Yeung AS (1998) A general class of loss functions with individual applications. J Qual Technol 30:152–162

    Google Scholar 

  10. Reynolds MR, Stoumbos ZG (2000) The SPRT chart for monitoring a proportion. IIE Trans 30:545–561

    Article  Google Scholar 

  11. Sweet AL (1986) Control charts using coupled exponentially weighted moving averages. IIE Trans 18:26–33

    Google Scholar 

  12. Gan FF (1995) Joint monitoring of process mean and variance using exponentially weighted moving average control charts. Technomitrics 37:446–453

    Article  MATH  Google Scholar 

  13. Reynolds MR, Stoumbos ZG (2001) Monitoring the process mean and variance using individual observations and variable sampling intervals. J Qual Technol 33:181–205

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhang Wu.

Calculation of ARL of a WL chart

Calculation of ARL of a WL chart

The statistic WL (Eq. 6) is greater than Γ when

$$\overline{x} <\mu _{0} - a,\,{\text{or}}\,\overline{x} >\mu _{0} + a,$$
(14)

or

$$\mu _{0} - a < \overline{x} < \mu _{0} + a\,\,{\text{and}}\,s^{2} > \frac{{\Gamma - {\left( {1 - \lambda } \right)}{\left( {\overline{x} - \mu _{0} } \right)}^{2} }}{\lambda }$$
(15)

where,

$$a = {\sqrt {\frac{\Gamma } {{1 - \lambda }}} }{\text{.}}$$
(16)

Thus, the probability that WL is greater than Γ can be calculated by conditioning on the value of the sample mean \(\overline{x} .\).

$$\Pr {\left( {WL >\Gamma } \right)} = P_{1} + P_{2} + P_{3} {\text{.}}$$
(17)
$$P_{1} = \Pr {\left( {\overline{x} <\mu _{0} - a} \right)} = \Phi {\left[ {\frac{{ - {\sqrt n }{\left( {a + \delta _{\mu } \sigma _{0} } \right)}}} {{\delta _{\sigma } \sigma _{0} }}} \right]}{\text{.}}$$
(18)
$$P_{2} = \Pr {\left( {\overline{x} >\mu _{0} + a} \right)} = 1 - \Phi {\left[ {\frac{{{\sqrt n }{\left( {a - \delta _{\mu } \sigma _{0} } \right)}}} {{\delta _{\sigma } \sigma _{0} }}} \right]}{\text{.}}$$
(19)
$$P_{3} = {\int\limits_{\mu _{0} - a}^{\mu _{0} + a} {p{\left( {\overline{x} } \right)}} }\,f{\left( {\overline{x} } \right)}d\overline{x} {\text{.}}$$
(20)

where, \(f{\left( {\overline{x} } \right)}\) is the density probability function of \(\overline{x}\) that follows a normal distribution with the mean equal to \({\left( {\mu _{0} + \delta _{\mu } \sigma _{0} } \right)}\) and the variance equal to \({\left( {\delta _{\sigma } \sigma _{0} } \right)}^{2} /n;\) and \(p{\left( {\overline{x} } \right)}\) is the probability that WL is greater than Γ when the value of \(\overline{x}\) is given within the range between (μ0a) and (μ0+a). From Eq. (15)

$$p{\left( {\overline{x} } \right)} = \Pr {\left( {s^{2} >\frac{{\Gamma - {\left( {1 - \lambda } \right)}{\left( {\overline{x} - \mu _{0} } \right)}^{2} }} {\lambda }} \right)} = \Pr {\left( {Q > b{\left( {\overline{x} } \right)}} \right)} = 1 - \chi ^{2}_{{n - 1}} {\left( {b{\left( {\overline{x} } \right)}} \right)}{\text{.}}$$
(21)

where, the random variable Q follows a Chi-square distribution with degrees of freedom of (n–1) and

$$b{\left( {\overline{x} } \right)} = \frac{{{\left( {n - 1} \right)}{\left[ {\Gamma - {\left( {1 - \lambda } \right)}{\left( {\overline{x} - \mu _{0} } \right)}^{2} } \right]}}}{{\lambda {\left( {\delta _{\sigma } \sigma _{0} } \right)}^{2} }}{\text{.}}$$
(22)

Finally, the ARL of the WL chart is calculated by

$$ARL = 1 \mathord{\left/ {\vphantom {1 {\Pr {\left( {WL > UCL_{{WL}} } \right)}}}} \right. \kern-\nulldelimiterspace} {\Pr {\left( {WL > UCL_{{WL}} } \right)}}$$
(23)

The weighted loss function WL can also be expressed as

$$\begin{array}{*{20}c} {WL = \sigma ^{2}_{0} w{\ell }} \\ {w{\ell } = \lambda {\left( {\frac{s}{{\sigma _{0} }}} \right)}^{2} + {\left( {1 - \lambda } \right)}{\left( {\frac{{\overline{x} - \mu _{0} }}{{\sigma _{0} }}} \right)}^{2} } \\ \end{array} $$
(24)

where, \(w{\ell }\) is a special case of WL under the standard condition (μ 0 =0, σ 0 =1). Recall Eqs. 13 and 23,

$$\begin{array}{*{20}c} {ARL = 1 \mathord{\left/ {\vphantom {1 {\Pr {\left( {WL > UCL_{{WL}} } \right)}}}} \right. \kern-\nulldelimiterspace} {\Pr {\left( {WL > UCL_{{WL}} } \right)}}} \\{ = 1 \mathord{\left/ {\vphantom {1 {\Pr {\left( {\sigma ^{2}_{0} w{\ell } >\sigma ^{2}_{0} {\left[ {UCL_{{WL}} } \right]}_{{{\text{standard}}}} } \right)}}}} \right. \kern-\nulldelimiterspace} {\Pr {\left( {\sigma ^{2}_{0} w{\ell } >\sigma ^{2}_{0} {\left[ {UCL_{{WL}} } \right]}_{{{\text{standard}}}} } \right)}}} \\{ = 1 \mathord{\left/ {\vphantom {1 {\Pr {\left( {w{\ell } > {\left[ {UCL_{{WL}} } \right]}_{{{\text{standard}}}} } \right)}}}} \right. \kern-\nulldelimiterspace} {\Pr {\left( {w{\ell } > {\left[ {UCL_{{WL}} } \right]}_{{{\text{standard}}}} } \right)}}} \\\end{array} $$
(25)

It indicates that, for a given set of values of \(\delta _{\mu }\) and \(\delta _{\sigma }\), a general-condition WL chart with a control limit UCLWL given by Eq. 13 produces the same ARL as a standard-condition WL chart with (UCLWL)standard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Z., Tian, Y. Weighted-loss-function control charts. Int J Adv Manuf Technol 31, 107–115 (2006). https://doi.org/10.1007/s00170-005-0160-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-005-0160-4

Keywords

Navigation