Skip to main content
Log in

Verification of NC machining processes using swept volumes

  • Original Article
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

A numerically controlled (NC) machining verification method is developed based on a formulation for delineating the volume generated by the motion of a cutting tool on the workpiece (stock). The motion of a cutting tool is modeled as a surface undergoing a sweep operation along another geometric entity where machine tool trajectory includes translational and rotational movements. A rank-deficiency condition is imposed on the Jacobian of the sweep to determine the singular surfaces. Singular entities are then intersected to determine sub-entities that may exist on the boundary of the volume. A perturbation method is used to identify the boundary envelope of the material volume to be removed. Numerical examples

illustrating the formulation are presented. Benefits of this method are its ability to depict and visualize the manifold and to compute a value for the volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang WP, Wang KK (1986) Geometric modeling for swept volume of moving solids. IEEE Comput Graph Appl 6(12):8

    Article  MATH  Google Scholar 

  2. Boussac S, Crosnier A (1996) Swept volumes generated from deformable objects application to NC verification. Proceedings of the 13th IEEE International Conference on Robotics and Automation, Minneapolis, MN, 1996, vol 2, pp 1813–1818

  3. Liu C, Esterling D (1997) Solid modeling of 4-axis wire EDM cut geometry. Comput Aided Des 29(12):803

    Article  Google Scholar 

  4. Chiou JCJ (2004) Accurate tool position for five-axis rule surface machining by swept envelope approach. Comput Aided Des 36(10):967

    Article  Google Scholar 

  5. Lartigue C, Duc E, Affouard A (2003) Tool path deformation in 5-axis flank milling using envelope surface. Comput Aided Des 35(4):375

    Article  Google Scholar 

  6. Roth D, Bedi S, Ismail F, Mann S (2001) Surface swept by a toroidal cutter during 5-axis machining. Comput Aided Des 33(1):57

    Article  Google Scholar 

  7. Blackmore D, Leu MC, Wang LP, Jiang H (1997) Swept volumes: a retrospective and prospective view. Neural Parallel Sci Comput 5:81

    MathSciNet  Google Scholar 

  8. Leu MC, Wang L, Blackmore D (1997) Verification program for 5-axis NC machining with general APT tools. Ann CIRP 46(1):419

    Google Scholar 

  9. Voelker HB, Hunt WA (1985) The role of solid modeling in machining process modeling and NC verification. SAE Technical Paper 810195, Warrendale, PA

  10. Menon JP, Voelcker HB (1992) Toward a comprehensive formulation of NC verification as a mathematical and computational problem. Proceedings of the 1992 Winter Annual Meeting of ASME, Anaheim, CA, 1992, vol 59, pp 147–164

  11. Oliver J, Goodman E (1990) Direct dimensional NC verification. Comput Aided Des 22:3

    Article  MathSciNet  Google Scholar 

  12. Narvekar AP, Huang Y, Oliver J (1992) Intersection of rays with parametric envelope surfaces representing five-axis NC milling tool swept volumes. Proceedings of the 1992 18th Annual ASME Design Automation Conference, Scottsdale, AZ, 1992, vol 44, pp 223–230

  13. Takata S, Tsai MD, Inui M (1992) A cutting simulation system for machinability evaluation using a workpiece model. Ann CIRP 38:539

    Google Scholar 

  14. Jerard R, Drysdale R (1988) Geometric simulation of numerical control machinery. ASME Comput Eng 2:129

    Google Scholar 

  15. Jerard R, Drysdale R (1991) Methods for geometric modeling, simulation, and spatial verification of NC machining programs. In: Wozny MJ, Turner JU, Pegna J (ed) Product modeling for computer-aided design. North Holland, Amsterdam, pp 1–14

  16. Koren Y, Lin RS (1995) Five-axis surface interpolators. Ann CIRP 44(1):379

    Article  Google Scholar 

  17. Menon JP, Robinson DM (1993) Advanced NC verification via massively parallel raycasting. ASME Manufact Rev 6:141

    Google Scholar 

  18. Oliver JH (1990) Efficient intersection of surface normals with milling tool swept volumes for discrete three-axis NC verification. ASME Des Autom Conf 23(1):159

    Google Scholar 

  19. Liang X, Xiao T, Han X, Ruan JX (1997) Simulation software GNCV of NC verification author affiliation. ICIPS Proceedings of the 1997 IEEE International Conference on Intelligent Processing Systems, Beijing, China, 1997, vol 2, pp 1852–1856

  20. Liu C, Esterling DM, Fontdecaba J, Mosel E (1996) Dimensional verification of NC machining profiles using extended quadtrees. Comput Aided Des 28(11):845

    Article  Google Scholar 

  21. Lee YS (1998) Non-isoparametric tool path planning by machining strip evaluation for 5-axis sculptured surface machining. Comput Aided Des 30(7):559

    Article  MATH  Google Scholar 

  22. Lo CC (1999) Efficient cutter-path planning for five-axis surface machining with a flat-end cutter. Comput Aided Des 31(9):557

    Article  MATH  Google Scholar 

  23. Chiou CJ, Lee YS (1999) A shape-generating approach for multi-axis machining G-buffer models. Comput Aided Des 31(12):761

    Article  MATH  Google Scholar 

  24. Chiou CJ, Lee YS (2002) A machining potential field approach to tool path generation for multi-axis sculptured surface machining. Comput Aided Des 34(5):357

    Article  Google Scholar 

  25. Elber G, Cohen E (1999) A unified approach to verification in 5-axis freeform milling environments. Comput Aided Des 31(13):795

    Article  MATH  Google Scholar 

  26. Balasubramaniam M, Laxmiprasad P, Sarma S, Shaikh Z (2000) Generating 5-axis NC roughing paths directly from a tessellated representation. Comput Aided Des 32(4):261

    Article  Google Scholar 

  27. Balasubramaniam M, Ho S, Sarma S, Adachi Y (2002) Generation of collision-free 5-axis tool paths using a haptic surface. Comput Aided Des 34(4):267

    Article  Google Scholar 

  28. Rao A, Sarma R (2000) On local gouging in five-axis sculptured surface machining using flat-end tools. Comput Aided Des 32(7):409

    Article  Google Scholar 

  29. Jensen CG, Red WE, Pi J (2002) Tool selection for five-axis curvature matched machining. Comput Aided Des 34(3):251

    Article  Google Scholar 

  30. Bohez ELJ (2002) Compensating for systematic errors in 5-axis NC machining. Comput Aided Des 34(5):391

    Article  Google Scholar 

  31. Mann S, Bedi S (2002) Generalization of the imprint method to general surfaces of revolution for NC machining. Comput Aided Des 34(5):373

    Article  Google Scholar 

  32. Yoon JH, Pottmann H, Lee YS (2003) Locally optimal cutting positions for 5-axis sculptured surface machining. Comput Aided Des 35(1):69

    Article  Google Scholar 

  33. Bedi S, Mann S, Menzel C (2003) Flank milling with flat end milling cutters. Comput Aided Des 35(3):293

    Google Scholar 

  34. Gray P, Bedi S, Ismail F (2003) Rolling ball method for 5-axis surface machining. Comput Aided Des 35(4):347

    Article  Google Scholar 

  35. Gray P, Ismail F, Bedi S (2004) Graphics-assisted rolling ball method for 5-axis surface machining. Comput Aided Des 36(7):653

    Article  Google Scholar 

  36. Fussell BK, Jerard RB, Hemmett JG (2003) Modeling of cutting geometry and forces for 5-axis sculptured surface machining. Comput Aided Des 35(4):333

    Article  Google Scholar 

  37. Lauwers B, Dejonghe P, Kruth JP (2003) Optimal and collision free tool posture in five-axis machining through the tight integration of tool path generation and machine simulation. Comput Aided Des 35(5):421

    Article  Google Scholar 

  38. Jun CS, Cha K, Lee YS (2003) Optimizing tool orientations for 5-axis machining by configuration-space search method. Comput Aided Des 35(6):549

    Article  Google Scholar 

  39. Bohez ELJ, Minh NTH, Kiatsrithanakorn B, Natasukon P, Huang RY, Son LT (2003) The stencil buffer sweep plane algorithm for 5-axis CNC tool path verification. Comput Aided Des 35(12):1129

    Article  Google Scholar 

  40. Langeron JM, Duc E, Lartigue C, Bourder P (2004) A new format for 5-axis tool path computation, using B-spline curves. Comput Aided Des 36(12):1219–1229

    Article  Google Scholar 

  41. Abdel-Malek K, Yeh H (1997) Geometric representation of the swept volume using Jacobian rank-deficiency conditions. Comput Aided Des 29(6):457

    Article  Google Scholar 

  42. Abdel-Malek K, Yeh HJ, Othman S (1998) Swept volumes, void and boundary identification. Comput Aided Des 30(13):1009

    Article  Google Scholar 

  43. Abdel-Malek K, Yeh HJ (1997) Analytical boundary of the workspace for general 3-DOF mechanisms. Int J Robot Res 16(2):1

    Google Scholar 

  44. Blackmore D, Leu MC, Wang LP (1997) Sweep-envelope differential equation algorithm and its application to NC machining verification. Comput Aided Des 29(9):629

    Article  Google Scholar 

  45. Ahn JC, Kim MS, Lim SB (1997) Approximate general sweep boundary of 2D curved object. Comput Vis Graph Image Process 55:98

    Article  Google Scholar 

  46. Elber G (1997) Global error bounds and amelioration of sweep surfaces. Comput Aided Des 29:441

    Article  Google Scholar 

  47. Ling ZK, Chase T (1996) Generating the swept area of a body undergoing planar motion. ASME J Mech Des 118:221

    Google Scholar 

  48. Sourin A, Pasko A (1996) A function representation for sweeping by a moving solid. IEEE Trans Vis Comput Graph 2:11

    Article  Google Scholar 

  49. Abdel-Malek K, Yeh HJ (1996) Determining intersection curves between surfaces of two solids. Comput Aided Des 28(6/7):539

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingzhou Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Abdel-Malek, K. Verification of NC machining processes using swept volumes. Int J Adv Manuf Technol 28, 82–91 (2006). https://doi.org/10.1007/s00170-004-2352-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-004-2352-8

Keywords

Navigation