Skip to main content
Log in

Industrial configuration in an economy with low transportation costs

  • Original Paper
  • Published:
The Annals of Regional Science Aims and scope Submit manuscript

Abstract

We examine how the spatial economy with multiple industries is shaped when interregional trade costs and intraregional commuting costs are low. All industries are characterized by increasing returns to scale and monopolistic competition, and they are differentiated by their trade costs and the degree of intra-industry competition measured by their firm numbers. We find some distinct rules in industrial location. First, at most, one industry disperses, while others agglomerate in a region according to their ratios of relative trade costs to firm numbers. Second, industries with stronger competition constitute a smaller region, while those with higher trade costs compose a larger region. The results are consistent with the classical Weberian location theory and suggest that the degree of intra-industry competition also becomes an essential factor to determine industrial location when transportation costs are small. Finally, the population differential between the regions monotonically decreases in the relative commuting cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Pflüger (2004) proposes an NEG model in which asymmetric interior equilibria appear by using a quasi-linear upper-tier utility for two types of goods with a CES subutility on the differentiated varieties. Furthermore, Pflüger and Südekum (2008) introduce housing costs into Pflüger (2004) model and show that asymmetric interior equilibria appear in the redispersion process as well. On the other hand, Tabuchi and Thisse (2002) and Murata (2003) introduce taste heterogeneity of workers and show that asymmetric interior equilibria appear. Differently from their studies, ours stresses the role of multiplicity of industries in determining city size.

  2. For further discussion about the relationship between the Weber and NEG models, see Ottaviano and Thisse (2004).

  3. Note that (Takatsuka and Zeng (2009), Proposition 2) show that the shares of industries located in the larger region are not in order of their trade costs if commuting costs are large.

  4. The assumption of intersectoral immobility of workers is justified as follows. First, changing a profession is often very costly for a skilled worker. Second, this assumption naturally extends the immobility assumption between the agricultural sector and the manufacturing sector imposed in most models in the NEG literature (e.g., Krugman 1991). Finally, the assumption of mobility among industries is accompanied with other restrictive assumptions in order to obtain analytical results (e.g., Tabuchi and Thisse 2006).

  5. Wages might vary across industries, but, in equilibrium, the bid rent function of each type of worker is the same because of the common slope of \(-\theta \).

  6. For trade to occur in all industries, (i) all firms’ net prices of trade costs must be positive and (ii) consumption in all industries must be positive. By a simple calculation, we can check that both conditions are equivalent to the condition of \(\tau <\tau _{\text{ trade}}\).

  7. In our model, we confirm that the first term of (6) (i.e., the market-access effect on firms) dominates the second term of (6) (i.e., the local competition effect) for a sufficiently small \(\tau \), since the former includes a quadratic term and a linear term in \(\tau \) while the latter has a quadratic term only.

  8. (Takatsuka and Zeng (2009), Fig. 3) show that manufacturing industries with high transport costs (e.g., precision instruments and electrical machinery) have remained close to the core while manufacturing industries with low transport costs (e.g., printing and publishing and transportation equipment) have relocated, to a considerable degree, to the periphery in Japan. This suggests that the trade cost is indeed a primary factor of industrial location and our prediction is reasonable.

  9. The numerical simulations in the next section suggest that this relationship holds irrespectively of the size of \(\tau \).

  10. In the case of \(\rho <\rho ^{\dagger }(K,K)\), if \(\rho <4(B_{i}-A_{i}\tau _{trade})\) for any \(i\), then the full agglomeration is always stable. Otherwise, the full agglomeration is stable when \(0<\tau <(4B_{i}-\rho )/4A_{i}\) for any \(i\).

  11. Takatsuka and Zeng (2009) show a similar result in a case that the trade costs are different across industries, while the degree of intra-industry competition (i.e., the number of firms) is the same for all industries.

  12. The range of \(\omega /L\) for each case is as follows: Case (1): 10.5, Case (2): 5.9, Case (3): 3.3, Case (4): 1.0.

  13. We have similar results for other cases.

References

  • Alsleben C (2005) The downside of knowledge spillovers: an explanation for the dispersion of high-tech industries. J Econ 84:217–248

    Google Scholar 

  • Amiti M (1998) Inter-industry trade in manufactures: does country size matter? J Int Econ 44:231–255

    Article  Google Scholar 

  • Anas A, Xiong K (2003) Intercity trade and the industrial diversification of cities. J Urban Econ 54:258–276

    Article  Google Scholar 

  • Combes P-P, Duranton G (2006) Labor pooling, labor poaching, and spatial clustering. Reg Sci Urban Econ 36:1–28

    Article  Google Scholar 

  • d’Aspremont C, Gabszewicz JJ, Thisse J-F (1979) On Hotelling’s “stability in competition”. Econometrica 47:1145–1150

    Article  Google Scholar 

  • Glaeser EL, Kohlhase JE (2004) Cities, regions and the decline of transport costs. Pap Reg Sci 83:197–228

    Google Scholar 

  • Helpman E (1998) The size of regions. In: Pines D, Sadka E, Zilcha I (eds) Topics in public economics: theoretical and applied analysis. Cambridge University Press, Cambridge, pp 33–54

    Google Scholar 

  • Henderson JV (1988) Urban development: theory, fact, and illusion. Oxford University Press, Oxford

    Google Scholar 

  • Hotelling H (1929) Stability in competition. Econ J 39:41–57

    Article  Google Scholar 

  • Krugman P (1981) Intraindustry specialization and the gains from trade. J Political Econ 89:959–973

    Article  Google Scholar 

  • Krugman P (1991) Increasing returns and economic geography. J Political Econ 99:483–499

    Article  Google Scholar 

  • Mills ES, Hamilton BW (1994) Urban economics, 5th edn. Harper Collins College Publishers, New York

    Google Scholar 

  • Murata Y (2003) Product diversity, taste heterogeneity, and geographic distribution of economic activities: Market vs. non-market interactions. J Urban Econ 53:126–144

    Article  Google Scholar 

  • Murata Y, Thisse J-F (2005) A simple model of economic geography á la Helpman-Tabuchi. J Urban Econ 58:137–155

    Article  Google Scholar 

  • Ottaviano G, Tabuchi T, Thisse J-F (2002) Agglomeration and trade revisited. Int Econ Rev 43:409–436

    Article  Google Scholar 

  • Ottaviano G, Thisse J-F (2004) Agglomeration and economic geography. In: Henderson JV, Thisse J-F (eds) Handbook of regional and urban economics, vol 4. Elsevier, Amsterdam, pp 2563–2608

    Google Scholar 

  • Pflüger M (2004) A simple, analytically solvable, Chamberlinian agglomeration model. Reg Sci Urban Econ 34:565–573

    Article  Google Scholar 

  • Pflüger M, Südekum J (2008) Integration, agglomeration and welfare. J Urban Econ 63:544–566

    Article  Google Scholar 

  • Suedekum J (2006) Agglomeration and regional costs of living. J Reg Sci 46:529–543

    Article  Google Scholar 

  • Tabuchi T (1998) Urban agglomeration and dispersion: a synthesis of Alonso and Krugman. J Urban Econ 44:333–351

    Article  Google Scholar 

  • Tabuchi T, Thisse J-F (2002) Taste heterogeneity, labor mobility and economic geography. J Dev Econ 69:155–177

    Article  Google Scholar 

  • Tabuchi T, Thisse J-F (2006) Regional specialization, urban hierarchy, and commuting costs. Int Econ Rev 47:1295–1317

    Article  Google Scholar 

  • Takatsuka H, Zeng D-Z (2009) Dispersion forms: an interaction of market access, competition, and urban costs. J Reg Sci 49:177–204

    Article  Google Scholar 

  • Weber A (1929) The theory of the location of industries. University of Chicago Press, Chicago (Translated by C.J. Friedrich)

  • Zeng D-Z (2006) Redispersion is different from dispersion: spatial economy of multiple industries. Ann Reg Sci 40:229–247

    Google Scholar 

Download references

Acknowledgments

We are grateful to Tomoya Mori, Takatoshi Tabuchi, three anonymous reviewers, Editor Janet Kohlhase, and the seminar participants at University of Tokyo, Tohoku University, and Chuo University for helpful suggestions. Financial support from Japan Society for the Promotion of Science through Grants-in-Aid for Scientific Research 24530303, 22330073, 20730183 for the first author, and 24243036, 24330072, 22330073, 21243021, and the Y.C. Tang disciplinary development fund of Zhejiang University for the second author are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hajime Takatsuka.

Appendices

Appendix A: Proof of Proposition 1

We show that any distribution pattern in which \(k(\ge \!\!\!2)\) types of industries disperse is unstable for a sufficiently small \(\tau \). On the contrary, assume a stable equilibrium in which \(k\) types of industries disperse. Number the dispersing industries by \(1, \ldots ,k\), and consider matrix \(\Delta \equiv (\delta _{ij})_{k\times k}\), where \(\delta _{ij}\) is defined by (8). Because of the stability of this equilibrium with respect to dynamic system (9), all the real parts of the eigenvalues of \((-\Delta )\) must be negative, and, hence, \(\left| \Delta \right| > 0\).

Let

$$\begin{aligned} \Upsilon \equiv \biggr (\delta _{ij}-\frac{\rho }{2}L_{j}\tau \biggr ) _{k\times k},\quad \Theta _{i}\equiv \frac{\rho }{2}L_{i}\tau \left( \begin{array}{c} 1 \\ \vdots \\ 1 \end{array} \right) _{k\times 1}, \end{aligned}$$

and let \((\Theta _{i},\Upsilon ^{-i})\) be the matrix \(\Upsilon \) with its \(i\) th column replaced by \(\Theta _{i}\). It holds that

$$\begin{aligned} \left|\Delta \right|=\left|\Upsilon \right|+\sum _{i=1}^{k}\left|(\Theta _{i},\Upsilon ^{-i})\right|\text{.} \end{aligned}$$
(18)

In (18), \(|\Upsilon |\) is a \(\tau \)-polynomial of degree \(2k\), while \(|(\Theta _{i},\Upsilon ^{-i})|\) is a \(\tau \)-polynomial of degree \( 2k-1\). According to Lemma 4, all terms with orders below \((2k\!-\!2)\) in (18) disappear. In other words, the terms of order \((2k\!-\!2)\) in the polynomials are significant if \(\tau \) is small enough. Furthermore, according to Lemma 5, \(|\Delta |\!<\!0\) holds when \(\tau \) is small. The contradiction implies that plural industries could not disperse simultaneously.\(\square \)

Lemma 4

All terms with orders below \((2k-2)\) in (18) are zero.

Proof

First, we consider \(\left|\Upsilon \right|\). The elements of \(\Upsilon \) are composed of \(\tau ^{2}\)-terms (\(\mu _{1}\), \(\xi _{1}\), \(\psi _{i}\)) and \(\tau \)-terms (\(\mu _{2}\), \( \xi _{2}\)). If \(\left|\Upsilon \right|\) is decomposed into a sum of determinants, in which each column is composed of \(\tau ^{2}\)-terms only or \(\tau \)-terms only, the terms of order below \((2k-2)\) in \(\left|\Upsilon \right|\) could then be represented as a sum of determinants with at least three columns that are composed of only \(\tau \)-terms. One of the determinants, for example, is

$$\begin{aligned}&\left|\begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} -\omega _{1}\mu _{2}-\omega _{1}\frac{L_{1}}{L_{1}}\xi _{2}&-\omega _{2}\mu _{2}-\omega _{1}\frac{L_{2}}{L_{1}}\xi _{2}&-\omega _{3}\mu _{2}-\omega _{1}\frac{L_{3}}{L_{1}}\xi _{2}&\delta _{14}-\frac{\rho }{2} L_{4}\tau&\cdots&\delta _{1k}-\frac{\rho }{2}L_{k}\tau \\ -\omega _{1}\mu _{2}-\omega _{2}\frac{L_{1}}{L_{2}}\xi _{2}&-\omega _{2}\mu _{2}-\omega _{2}\frac{L_{2}}{L_{2}}\xi _{2}&-\omega _{3}\mu _{2}-\omega _{2}\frac{L_{3}}{L_{2}}\xi _{2}&\delta _{24}-\frac{\rho }{2} L_{4}\tau&\cdots&\delta _{2k}-\frac{\rho }{2}L_{k}\tau \\ \vdots&\vdots&\vdots&\vdots&\ddots&\vdots \\ -\omega _{1}\mu _{2}-\omega _{k}\frac{L_{1}}{L_{k}}\xi _{2}&-\omega _{2}\mu _{2}-\omega _{k}\frac{L_{2}}{L_{k}}\xi _{2}&-\omega _{3}\mu _{2}-\omega _{k}\frac{L_{3}}{L_{k}}\xi _{2}&\delta _{k4}-\frac{\rho }{2} L_{4}\tau&\cdots&\delta _{kk}-\frac{\rho }{2}L_{k}\tau \end{array} \right|\\&\qquad =\left|\begin{array}{cccc} -\omega _{1}\mu _{2}-\omega _{1}\frac{L_{1}}{L_{1}}\xi _{2}&-\omega _{2}\mu _{2}-\omega _{1}\frac{L_{2}}{L_{1}}\xi _{2}&-\omega _{3}\mu _{2}-\omega _{1}\frac{L_{3}}{L_{1}}\xi _{2}&\cdots \\ L_{1}(\frac{\omega _{1}}{L_{1}}-\frac{\omega _{2}}{L_{2}})\xi _{2}&L_{2}( \frac{\omega _{1}}{L_{1}}-\frac{\omega _{2}}{L_{2}})\xi _{2}&L_{3}(\frac{ \omega _{1}}{L_{1}}-\frac{\omega _{2}}{L_{2}})\xi _{2}&\cdots \\ \vdots&\vdots&\vdots&\vdots \\ L_{1}(\frac{\omega _{1}}{L_{1}}-\frac{\omega _{k}}{L_{k}})\xi _{2}&L_{2}( \frac{\omega _{1}}{L_{1}}-\frac{\omega _{k}}{L_{k}})\xi _{2}&L_{3}(\frac{ \omega _{1}}{L_{1}}-\frac{\omega _{2}}{L_{2}})\xi _{2}&\cdots \end{array} \right|\\&\qquad =\left|\begin{array}{cccc} -\omega _{1}\mu _{2}-\omega _{1}\frac{L_{1}}{L_{1}}\xi _{2}&(\frac{L_{2}}{ L_{1}}\omega _{1}-\omega _{2})\mu _{2}&(\frac{L_{3}}{L_{1}}\omega _{1}-\omega _{3})\mu _{2}&\cdots \\ L_{1}(\frac{\omega _{1}}{L_{1}}-\frac{\omega _{2}}{L_{2}})\xi _{2}&0&0&\cdots \\ \vdots&\vdots&\vdots&\vdots \\ L_{1}(\frac{\omega _{1}}{L_{1}}-\frac{\omega _{k}}{L_{k}})\xi _{2}&0&0&\cdots \end{array} \right|=0\text{.} \end{aligned}$$

Of course, this result holds even if the columns with \(\tau \)-terms are in different places.

Next, we consider \(\sum _{i=1}^{k}\left|(\Theta _{i},\Upsilon ^{-i})\right|\). If \(\left|(\Theta _{i},\Upsilon ^{-i})\right|\) is decomposed into a sum of determinants, as in the above case, the term of order below \((2k-2)\) in \(|(\Theta _{i},\Upsilon ^{-i})|\) could then be represented as a sum of determinants with at least two columns that are composed of \(\tau \)-terms only except for the \(i\)th column. One of the determinants, for example, is

$$\begin{aligned}&\left|\begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }cc} \frac{\rho }{2}\tau L_{1}&-\omega _{2}\mu _{2}-\omega _{1}\frac{L_{2}}{ L_{1}}\xi _{2}&-\omega _{3}\mu _{2}-\omega _{1}\frac{L_{3}}{L_{1}}\xi _{2}&\delta _{14}-\frac{\rho }{2}L_{4}\tau&\cdots&\delta _{1k}-\frac{\rho }{ 2}L_{k}\tau \\ \frac{\rho }{2}\tau L_{1}&-\omega _{2}\mu _{2}-\omega _{2}\frac{L_{2}}{ L_{2}}\xi _{2}&-\omega _{3}\mu _{2}-\omega _{2}\frac{L_{3}}{L_{2}}\xi _{2}&\delta _{24}-\frac{\rho }{2}L_{4}\tau&\cdots&\delta _{2k}-\frac{\rho }{ 2}L_{k}\tau \\ \vdots&\vdots&\vdots&\vdots&\ddots&\vdots \\ \frac{\rho }{2}\tau L_{1}&-\omega _{2}\mu _{2}-\omega _{k}\frac{L_{2}}{ L_{k}}\xi _{2}&-\omega _{3}\mu _{2}-\omega _{k}\frac{L_{3}}{L_{k}}\xi _{2}&\delta _{k4}-\frac{\rho }{2}L_{4}\tau&\cdots&\delta _{kk}-\frac{\rho }{ 2}L_{k}\tau \end{array} \right|\\&\quad =\left|\begin{array}{cccc} \frac{\rho }{2}\tau L_{1}&-\omega _{2}\mu _{2}-\omega _{1}\frac{L_{2}}{ L_{1}}\xi _{2}&-\omega _{3}\mu _{2}-\omega _{1}\frac{L_{3}}{L_{1}}\xi _{2}&\cdots \\ 0&L_{2}(\frac{\omega _{1}}{L_{1}}-\frac{\omega _{2}}{L_{2}})\xi _{2}&L_{3}(\frac{\omega _{1}}{L_{1}}-\frac{\omega _{2}}{L_{2}})\xi _{2}&\cdots \\ \vdots&\vdots&\vdots&\vdots \\ 0&L_{2}(\frac{\omega _{1}}{L_{1}}-\frac{\omega _{k}}{L_{k}})\xi _{2}&L_{3}(\frac{\omega _{1}}{L_{1}}-\frac{\omega _{k}}{L_{k}})\xi _{2}&\cdots \end{array} \right|\\&\quad =\frac{\rho \tau L_{1}}{2}\left|\begin{array}{ccc} L_{2}(\frac{\omega _{1}}{L_{1}}-\frac{\omega _{2}}{L_{2}})\xi _{2}&L_{3}( \frac{\omega _{1}}{L_{1}}-\frac{\omega _{2}}{L_{2}})\xi _{2}&\cdots \\ \vdots&\vdots&\vdots \\ L_{2}(\frac{\omega _{1}}{L_{1}}-\frac{\omega _{k}}{L_{k}})\xi _{2}&L_{3}( \frac{\omega _{1}}{L_{1}}-\frac{\omega _{k}}{L_{k}})\xi _{2}&\cdots \end{array} \right|\\&\quad =0. \end{aligned}$$

Of course, this result holds even if the columns with \(\tau \)-terms, and \( \Theta _{i}\) are in different places.

Therefore, we have shown that all terms of orders below \((2k\!-\!2)\) in\(|\Delta |\) are zero. \(\square \)

Lemma 5

The term of order \(2k-2\) in \(|\Upsilon |\) is negative, while the term of order \((2k-2)\) in \(\sum _{i=1}^{k}|(\Theta _{i},\Upsilon ^{-i})|\) is zero.

Proof

First, for \(m\ne n\ne i\in \{1,\ldots ,k\}\), let

$$\begin{aligned} \mathcal{A }&\equiv \sum \limits _{i=3}^{k}\biggr (\frac{\omega _{3}L_{i}}{\omega _{i}L_{3}}\biggr )^{2}\biggr (\frac{\omega _{1}}{L_{1}}-\frac{\omega _{i}}{ L_{i}}\biggr ), \\ \mathcal{B }&\equiv \frac{\omega _{3}^{2}}{L_{3}}\psi _{3}+\xi _{1}\sum _{i=3}^{k}\biggr (\frac{\omega _{3}L_{i}}{\omega _{i}L_{3}}\biggr )^{2} \biggr (\frac{\omega _{i}^{2}}{L_{i}}-\frac{\omega _{1}^{2}}{L_{1}}\biggr ). \end{aligned}$$

Then

$$\begin{aligned}&\left|\begin{array}{ll} \frac{\omega _{1}}{L_{1}}-\frac{\omega _{2}}{L_{2}}&(\frac{\omega _{2}^{2} }{L_{2}}-\frac{\omega _{1}^{2}}{L_{1}})\xi _{1} \\ \mathcal{A }&\mathcal{B } \end{array} \right|\nonumber \\&\quad = \frac{\omega _{3}^{2}\psi _{3}}{L_{3}}\biggr (\frac{\omega _{1}}{L_{1}}- \frac{\omega _{2}}{L_{2}}\biggr )+\sum _{i=3}^{k}\biggr (\frac{\omega _{3}L_{i} }{\omega _{i}L_{3}}\biggr )^{2}\left|\begin{array}{ll} \frac{\omega _{1}}{L_{1}}-\frac{\omega _{2}}{L_{2}}&(\frac{\omega _{2}^{2} }{L_{2}}-\frac{\omega _{1}^{2}}{L_{1}})\xi _{1} \\ \frac{\omega _{1}}{L_{1}}-\frac{\omega _{i}}{L_{i}}&(\frac{\omega _{i}^{2} }{L_{i}}-\frac{\omega _{1}^{2}}{L_{1}})\xi _{1} \end{array} \right|\nonumber \\&\quad = \frac{\omega _{3}^{2}\psi _{3}}{L_{3}}\biggr \{\frac{\omega _{1}}{L_{1}}- \frac{\omega _{2}}{L_{2}}+\frac{\xi _{1}}{L_{1}L_{2}}\sum _{i=3}^{k}\frac{1}{\omega _{i}^{2}\psi _{i} }[\omega _{1}\omega _{2}(\omega _{1}-\omega _{2})L_{i}\nonumber \\&\;\qquad +\ \omega _{2}\omega _{i}(\omega _{2}-\omega _{i})L_{1}+\omega _{i}\omega _{1}(\omega _{i}-\omega _{1})L_{2}]\biggr \}. \end{aligned}$$
(19)

For convenience, we introduce notation

$$\begin{aligned} \varpi (m,n,i)\equiv&\biggr (\frac{\omega _{m}}{L_{m}}-\frac{\omega _{n}}{ L_{n}}\biggr )\nonumber \\&\times [\omega _{m}\omega _{n}(\omega _{m}-\omega _{n})L_{i}+\omega _{n}\omega _{i}(\omega _{n}-\omega _{i})L_{m}+\omega _{i}\omega _{m}(\omega _{i}-\omega _{m})L_{n}]\nonumber \\ \end{aligned}$$
(20)

for \(m,n,i\in \{1,2,\ldots ,k\}\). Then, it holds that

$$\begin{aligned} \varpi (m,n,i)+\varpi (n,i,m)+\varpi (i,m,n)=0. \end{aligned}$$
(21)

Now, we consider the \(\tau ^{(2k-2)}\)-term in \(\left|\Upsilon \right|\), which can be represented as a sum of determinants that has only two columns with \(\tau \)-terms. One of the determinant, for example, is calculated as

$$\begin{aligned}&\left|\begin{array}{c@{\quad }cccc} -\omega _{1}\mu _{2}-\omega _{1}\frac{L_{1}}{L_{1}}\xi _{2}&-\omega _{2}\mu _{2}-\omega _{1}\frac{L_{2}}{L_{1}}\xi _{2}&\omega _{3}^{2}\mu _{1}+\omega _{1}^{2}\frac{L_{3}}{L_{1}}\xi _{1}&\cdots&\omega _{k}^{2}\mu _{1}+\omega _{1}^{2}\frac{L_{k}}{L_{1}}\xi _{1} \\ -\omega _{1}\mu _{2}-\omega _{2}\frac{L_{1}}{L_{2}}\xi _{2}&-\omega _{2}\mu _{2}-\omega _{2}\frac{L_{2}}{L_{2}}\xi _{2}&\omega _{3}^{2}\mu _{1}+\omega _{2}^{2}\frac{L_{3}}{L_{2}}\xi _{1}&\cdots&\omega _{k}^{2}\mu _{1}+\omega _{2}^{2}\frac{L_{k}}{L_{2}}\xi _{1} \\ -\omega _{1}\mu _{2}-\omega _{3}\frac{L_{1}}{L_{3}}\xi _{2}&-\omega _{2}\mu _{2}-\omega _{3}\frac{L_{2}}{L_{3}}\xi _{2}&\omega _{3}^{2}(\mu _{1}+\xi _{1}+\psi _{3})&\cdots&\omega _{k}^{2}\mu _{1}+\omega _{3}^{2} \frac{L_{k}}{L_{3}}\xi _{1} \\ \vdots&\vdots&\vdots&\ddots&\vdots \\ -\omega _{1}\mu _{2}-\omega _{k}\frac{L_{1}}{L_{k}}\xi _{2}&-\omega _{2}\mu _{2}-\omega _{k}\frac{L_{2}}{L_{k}}\xi _{2}&\omega _{3}^{2}\mu _{1}+\omega _{k}^{2}\frac{L_{3}}{L_{k}}\xi _{1}&\cdots&\omega _{k}^{2}(\mu _{1}+\xi _{1}+\psi _{k}) \end{array} \right|\nonumber \\&\quad = \prod _{i=1}^{k}L_{i}\left|\begin{array}{ccccc} -\frac{\omega _{1}}{L_{1}}\mu _{2}-\frac{\omega _{1}}{L_{1}}\xi _{2}&( \frac{\omega _{1}}{L_{1}}-\frac{\omega _{2}}{L_{2}})\mu _{2}&\frac{\omega _{3}^{2}}{L_{3}}\mu _{1}+\frac{\omega _{1}^{2}}{L_{1}}\xi _{1}&\cdots&\frac{\omega _{k}^{2}}{L_{k}}\mu _{1}+\frac{\omega _{1}^{2}}{L_{1}}\xi _{1} \\ (\frac{\omega _{1}}{L_{1}}-\frac{\omega _{2}}{L_{2}})\xi _{2}&0&(\frac{ \omega _{2}^{2}}{L_{2}}-\frac{\omega _{1}^{2}}{L_{1}})\xi _{1}&\cdots&( \frac{\omega _{2}^{2}}{L_{2}}-\frac{\omega _{1}^{2}}{L_{1}})\xi _{1} \\ (\frac{\omega _{1}}{L_{1}}-\frac{\omega _{3}}{L_{3}})\xi _{2}&0&(\frac{ \omega _{3}^{2}}{L_{3}}-\frac{\omega _{1}^{2}}{L_{1}})\xi _{1}+\frac{\omega _{3}^{2}}{L_{3}}\psi _{3}&\cdots&(\frac{\omega _{3}^{2}}{L_{3}}-\frac{ \omega _{1}^{2}}{L_{1}})\xi _{1} \\ \vdots&\vdots&\vdots&\ddots&\vdots \\ (\frac{\omega _{1}}{L_{1}}-\frac{\omega _{k}}{L_{k}})\xi _{2}&0&(\frac{ \omega _{k}^{2}}{L_{k}}-\frac{\omega _{1}^{2}}{L_{1}})\xi _{1}&\cdots&( \frac{\omega _{k}^{2}}{L_{k}}-\frac{\omega _{1}^{2}}{L_{1}})\xi _{1}+\frac{ \omega _{k}^{2}}{L_{k}}\psi _{k} \end{array} \right|\nonumber \\&\quad =-\biggr (\frac{\omega _{1}}{L_{1}}-\frac{\omega _{2}}{L_{2}}\biggr )\mu _{2}\xi _{2}\prod _{i=1}^{k}L_{i} \nonumber \\&\qquad \,\,\times \left|\begin{array}{ccccc} \frac{\omega _{1}}{L_{1}}-\frac{\omega _{2}}{L_{2}}&(\frac{\omega _{2}^{2} }{L_{2}}-\frac{\omega _{1}^{2}}{L_{1}})\xi _{1}&(\frac{\omega _{2}^{2}}{ L_{2}}-\frac{\omega _{1}^{2}}{L_{1}})\xi _{1}&\cdots&(\frac{\omega _{2}^{2}}{L_{2}}-\frac{\omega _{1}^{2}}{L_{1}})\xi _{1} \\ \frac{\omega _{1}}{L_{1}}-\frac{\omega _{3}}{L_{3}}&(\frac{\omega _{3}^{2} }{L_{3}}-\frac{\omega _{1}^{2}}{L_{1}})\xi _{1}+\frac{\omega _{3}^{2}}{L_{3}} \psi _{3}&(\frac{\omega _{3}^{2}}{L_{3}}-\frac{\omega _{1}^{2}}{L_{1}})\xi _{1}&\cdots&(\frac{\omega _{3}^{2}}{L_{3}}-\frac{\omega _{1}^{2}}{L_{1}} )\xi _{1} \\ \frac{\omega _{1}}{L_{1}}-\frac{\omega _{4}}{L_{4}}&(\frac{\omega _{4}^{2} }{L_{4}}-\frac{\omega _{1}^{2}}{L_{1}})\xi _{1}&(\frac{\omega _{4}^{2}}{ L_{4}}-\frac{\omega _{1}^{2}}{L_{1}})\xi _{1}+\frac{\omega _{4}^{2}}{L_{4}} \psi _{4}&\cdots&(\frac{\omega _{4}^{2}}{L_{4}}-\frac{\omega _{1}^{2}}{ L_{1}})\xi _{1} \\ \vdots&\vdots&\vdots&\ddots&\vdots \\ \frac{\omega _{1}}{L_{1}}-\frac{\omega _{k}}{L_{k}}&(\frac{\omega _{k}^{2} }{L_{k}}-\frac{\omega _{1}^{2}}{L_{1}})\xi _{1}&(\frac{\omega _{k}^{2}}{ L_{k}}-\frac{\omega _{1}^{2}}{L_{1}})\xi _{1}&\cdots&(\frac{\omega _{k}^{2}}{L_{k}}-\frac{\omega _{1}^{2}}{L_{1}})\xi _{1}+\frac{\omega _{k}^{2} }{L_{k}}\psi _{k} \end{array} \right|\nonumber \\&\quad = -\biggr (\frac{\omega _{1}}{L_{1}}-\frac{\omega _{2}}{L_{2}}\biggr )\mu _{2}\xi _{2}\prod _{i=1}^{k}L_{i}\left|\begin{array}{ccccc} \frac{\omega _{1}}{L_{1}}-\frac{\omega _{2}}{L_{2}}&(\frac{\omega _{2}^{2} }{L_{2}}-\frac{\omega _{1}^{2}}{L_{1}})\xi _{1}&0&\cdots&0 \\ \frac{\omega _{1}}{L_{1}}-\frac{\omega _{3}}{L_{3}}&(\frac{\omega _{3}^{2} }{L_{3}}-\frac{\omega _{1}^{2}}{L_{1}})\xi _{1}+\frac{\omega _{3}^{2}}{L_{3}} \psi _{3}&-\frac{\omega _{3}^{2}\psi _{3}}{L_{3}}&\cdots&-\frac{\omega _{3}^{2}\psi _{3}}{L_{3}} \\ \frac{\omega _{1}}{L_{1}}-\frac{\omega _{4}}{L_{4}}&(\frac{\omega _{4}^{2} }{L_{4}}-\frac{\omega _{1}^{2}}{L_{1}})\xi _{1}&\frac{\omega _{4}^{2}\psi _{4}}{L_{4}}&\cdots&0 \\ \vdots&\vdots&\vdots&\ddots&\vdots \\ \frac{\omega _{1}}{L_{1}}-\frac{\omega _{k}}{L_{k}}&(\frac{\omega _{k}^{2} }{L_{k}}-\frac{\omega _{1}^{2}}{L_{1}})\xi _{1}&0&\cdots&\frac{\omega _{k}^{2}\psi _{k}}{L_{k}} \end{array} \right|\nonumber \\&\quad = -\biggr (\frac{\omega _{1}}{L_{1}}-\frac{\omega _{2}}{L_{2}}\biggr )\mu _{2}\xi _{2}\prod _{i=1}^{k}L_{i}\left|\begin{array}{ccccc} \frac{\omega _{1}}{L_{1}}-\frac{\omega _{2}}{L_{2}}&(\frac{\omega _{2}^{2} }{L_{2}}-\frac{\omega _{1}^{2}}{L_{1}})\xi _{1}&0&\cdots&0 \\ \mathcal{A }&\mathcal{B }&0&\cdots&0 \\ \frac{\omega _{1}}{L_{1}}-\frac{\omega _{4}}{L_{4}}&(\frac{\omega _{4}^{2} }{L_{4}}-\frac{\omega _{1}^{2}}{L_{1}})\xi _{1}&\frac{\omega _{4}^{2}\psi _{4}}{L_{4}}&\cdots&0 \\ \vdots&\vdots&\vdots&\ddots&\vdots \\ \frac{\omega _{1}}{L_{1}}-\frac{\omega _{k}}{L_{k}}&(\frac{\omega _{k}^{2} }{L_{k}}-\frac{\omega _{1}^{2}}{L_{1}})\xi _{1}&0&\cdots&\frac{\omega _{k}^{2}\psi _{k}}{L_{k}} \end{array} \right|\nonumber \\&\quad = -\biggr (\frac{\omega _{1}}{L_{1}}-\frac{\omega _{2}}{L_{2}}\biggr )\mu _{2}\xi _{2}L_{1}L_{2}\prod _{i=3}^{k}\omega _{i}^{2}\psi _{i}\biggr \{\biggr ( \frac{\omega _{1}}{L_{1}}-\frac{\omega _{2}}{L_{2}}\biggr ) \nonumber \\&\qquad +\frac{\xi _{1}}{L_{1}L_{2}}\sum _{i=3}^{k}\frac{1}{\omega _{i}^{2}\psi _{i} }[\omega _{1}\omega _{2}(\omega _{1}-\omega _{2})L_{i}+\omega _{2}\omega _{i}(\omega _{2}-\omega _{i})L_{1}+\omega _{i}\omega _{1}(\omega _{i}-\omega _{1})L_{2}]\biggr \} \end{aligned}$$
(22)
$$\begin{aligned}&\quad = -\biggr (\frac{\omega _{1}}{L_{1}}-\frac{\omega _{2}}{L_{2}}\biggr )^{2}\mu _{2}\xi _{2}L_{1}L_{2}\prod _{i=3}^{k}\omega _{i}^{2}\psi _{i}-\mu _{2}\xi _{1}\xi _{2}\sum _{i=3}^{k}\varpi (1,2,i)\prod _{l\ne 1,2,i}\omega _{l}^{2}\psi _{l}, \end{aligned}$$
(23)

where (22) is from (19), and (23) is from (20).

Similarly, the determinant having \(\tau \)-terms in the \(m\)th and \(n\)th columns is obtained as

$$\begin{aligned} -\biggr (\frac{\omega _m}{L_m}-\frac{\omega _n}{L_n}\biggr )^2\mu _2\xi _2L_1L_2 \prod _{i\ne m,n}\omega _i^2\psi _i -\mu _2\xi _1\xi _2 \sum _{i\ne m,n}^k\varpi (m,n,i) \prod _{l\ne m,n,i}\omega _l^2\psi _l \end{aligned}$$

The \(\tau ^{(2k-2)}\)-term in \(\left|\Upsilon \right|\) is the sum of the above determinants for all nonordered pairs \((m,n)\) with \(m\ne n\in \{1,\ldots ,k\}\), which is calculated as

$$\begin{aligned}&-\sum _{m=1}^{k-1}\sum _{n=m+1}^{k}\biggr (\frac{\omega _{m}}{L_{m}}-\frac{ \omega _{n}}{L_{n}}\biggr )^{2}\mu _{2}\xi _{2}L_{1}L_{2}\prod _{i\ne m,n}\omega _{i}^{2}\psi _{i} \nonumber \\&-\mu _{2}\xi _{1}\xi _{2}\sum _{m=1}^{k-1}\sum _{n=m}^{k}\sum _{i\ne m,n}^{k}\varpi (m,n,i)\prod _{l\ne m,n,i}\omega _{l}^{2}\psi _{l} \nonumber \\&= -\sum _{m=1}^{k-1}\sum _{n=m+1}^{k}\biggr (\frac{\omega _{m}}{L_{m}}-\frac{ \omega _{n}}{L_{n}}\biggr )^{2}\mu _{2}\xi _{2}L_{1}L_{2}\prod _{i\ne m,n}\omega _{i}^{2}\psi _{i} \nonumber \\&-\frac{1}{2}\mu _{2}\xi _{1}\xi _{2}\sum _{(m,n,i)|m\ne n\ne i}[\varpi (m,n,i)+\varpi (n,i,m)+\varpi (i,m,n)]\prod _{l\ne m,n,i}\omega _{l}^{2}\psi _{l} \nonumber \\&= -\sum _{m=1}^{k-1}\sum _{n=m+1}^{k}\biggr (\frac{\omega _{m}}{L_{m}}-\frac{ \omega _{n}}{L_{n}}\biggr )^{2}\mu _{2}\xi _{2}L_{1}L_{2}\prod _{i\ne m,n}\omega _{i}^{2}\psi _{i} \end{aligned}$$
(24)
$$\begin{aligned}&< 0, \end{aligned}$$
(25)

where (24) is from (21), and inequality (25) is from (13).

Next, we consider the \(\tau ^{(2k-2)}\)-term in \(\sum _{i=1}^{k}\left|(\Theta _{i},\Upsilon ^{-i})\right|\). This term is the sum of determinants having only one column with \(\tau \)-terms besides the \(i\)th column. They can be calculated as in the case of \(\left|\Upsilon \right|\). For example, one determinant of \(|(\Theta _{1},\Upsilon ^{-1})|\) is

$$\begin{aligned}&\left|\begin{array}{ccccc} \frac{\rho \tau L_{1}}{2}&-\omega _{2}\mu _{2}-\omega _{1}\frac{L_{2}}{ L_{1}}\xi _{2}&\omega _{3}^{2}\mu _{1}+\omega _{1}^{2}\frac{L_{3}}{L_{1}} \xi _{1}&\cdots&\omega _{k}^{2}\mu _{1}+\omega _{1}^{2}\frac{L_{k}}{L_{1} }\xi _{1} \\ \frac{\rho \tau L_{1}}{2}&-\omega _{2}\mu _{2}-\omega _{2}\frac{L_{2}}{ L_{2}}\xi _{2}&\omega _{3}^{2}\mu _{1}+\omega _{2}^{2}\frac{L_{3}}{L_{2}} \xi _{1}&\cdots&\omega _{k}^{2}\mu _{1}+\omega _{2}^{2}\frac{L_{k}}{L_{2} }\xi _{1} \\ \frac{\rho \tau L_{1}}{2}&-\omega _{2}\mu _{2}-\omega _{3}\frac{L_{2}}{ L_{3}}\xi _{2}&\omega _{3}^{2}(\mu _{1}+\xi _{1}+\psi _{3})&\cdots&\omega _{k}^{2}\mu _{1}+\omega _{3}^{2}\frac{L_{k}}{L_{3}}\xi _{1} \\ \vdots&\vdots&\vdots&\ddots&\vdots \\ \frac{\rho \tau L_{1}}{2}&-\omega _{2}\mu _{2}-\omega _{k}\frac{L_{2}}{ L_{k}}\xi _{2}&\omega _{3}^{2}\mu _{1}+\omega _{k}^{2}\frac{L_{3}}{L_{k}} \xi _{1}&\cdots&\omega _{k}^{2}(\mu _{1}+\xi _{1}+\psi _{k}) \end{array} \right|\\&= \frac{\rho \tau \xi _{2}}{2}\prod _{i=1}^{k}L_{i}\left|\begin{array}{cccc} \frac{\omega _{1}}{L_{1}}-\frac{\omega _{2}}{L_{2}}&\bigr (\frac{\omega _{2}^{2}}{L_{2}}-\frac{\omega _{1}^{2}}{L_{1}}\bigr )\xi _{1}&\cdots&\bigr (\frac{\omega _{2}^{2}}{L_{2}}-\frac{\omega _{1}^{2}}{L_{1}}\bigr )\xi _{1} \\ \frac{\omega _{1}}{L_{1}}-\frac{\omega _{3}}{L_{3}}&\bigr (\frac{\omega _{3}^{2}}{L_{3}}-\frac{\omega _{1}^{2}}{L_{1}}\bigr )\xi _{1}+\frac{\omega _{3}^{2}\psi _{3}}{L_{3}}&\cdots&\bigr (\frac{\omega _{3}^{2}}{L_{3}}- \frac{\omega _{1}^{2}}{L_{1}}\bigr )\xi _{1} \\ \vdots&\vdots&\ddots&\vdots \\ \frac{\omega _{1}}{L_{1}}-\frac{\omega _{k}}{L_{k}}&\bigr (\frac{\omega _{k}^{2}}{L_{k}}-\frac{\omega _{1}^{2}}{L_{1}}\bigr )\xi _{1}&\cdots&\bigr (\frac{\omega _{k}^{2}}{L_{k}}-\frac{\omega _{1}^{2}}{L_{1}}\bigr )\xi _{1}+\frac{\omega _{k}^{2}\psi _{k}}{L_{k}} \end{array} \right|\\&= \frac{\rho \tau \xi _{2}}{2}L_{1}L_{2}L_{3}\prod _{i=4}^{k}\omega _{i}^{2}\psi _{i}\left|\begin{array}{cc} \frac{\omega _{1}}{L_{1}}-\frac{\omega _{2}}{L_{2}}&\bigr (\frac{\omega _{2}^{2}}{L_{2}}-\frac{\omega _{1}^{2}}{L_{1}}\bigr )\xi _{1} \\ \sum \limits _{i=3}^{k}\bigr (\frac{\omega _{1}}{L_{1}}-\frac{\omega _{i}}{L_{i}}\bigr ) \bigr (\frac{\omega _{3}L_{i}}{\omega _{i}L_{3}}\bigr )^{2}&\frac{\omega _{3}^{2}\psi _{3}}{L_{3}}+\xi _{1}\sum \limits _{i=3}^{k}\bigr (\frac{\omega _{i}^{2}}{ L_{i}}-\frac{\omega _{1}^{2}}{L_{1}}\bigr )\bigr (\frac{\omega _{3}L_{i}}{ \omega _{i}L_{3}}\bigr )^{2} \end{array} \right|\\&= \frac{\rho }{2}\xi _{2}\tau (\omega _{1}L_{2}-\omega _{2}L_{1})\prod _{i\ne 1,2}\omega _{l}^{2}\psi _{i}+\frac{\rho }{2}\xi _{1}\xi _{2}\tau \sum \limits _{i=3}^{k}\prod _{l\ne 1,2,i}\omega _{l}^{2}\psi _{l}\varrho (1,2,i) \end{aligned}$$

where

$$\begin{aligned} \varrho (1,2,i)=\omega _{1}\omega _{2}(\omega _{1}-\omega _{2})L_{i}+\omega _{2}\omega _{i}(\omega _{2}-\omega _{i})L_{1}+\omega _{i}\omega _{1}(\omega _{i}-\omega _{1})L_{2}. \end{aligned}$$

Note that \(|(\Theta _{2},\Gamma ^{-2})|\) has a similar determinant with \( \omega _{1}L_{2}-\omega _{2}L_{1}\) replaced by \(\omega _{2}L_{1}-\omega _{1}L_{2}\), and \(\varrho (1,2,i)\) replaced by \(\varrho (2,1,i)\). Furthermore, it is easy to check that \(\varrho (1,2,i)+\varrho (2,1,i)=0\) holds. Therefore, the sum of these two determinants is zero. For this reason, the \(\tau ^{(2k-2)}\)-term in \(\sum _{i=1}^{k}\left|(\Theta _{i},\Upsilon ^{-i})\right|\) is zero. In conclusion, the \(\tau ^{(2k-2)} \)-term in \(\left|\Delta \right|\) is negative.\(\square \)

Appendix B: Proof of Lemma 1

  1. (i)

    follows directly from (13).

  2. (ii)

    Since \(\sum _{j=1}^{l-1}L_j>\sum _{j=l}^KL_j\), we have

    $$\begin{aligned} \sum _{j=1}^{l-1}\omega _j-\sum _{j=l}^K\omega _j>\frac{\omega _l}{L_l}\biggr ( \sum _{j=1}^{l-1}L_j-\sum _{j=l}^KL_j\biggr )>0, \end{aligned}$$

    where the first inequality is from (13). The first inequality can be rewritten as

    $$\begin{aligned} \omega _l\biggr (\sum _{j=1}^{l-1}L_j-\sum _{j=l}^KL_j\biggr )< L_l\biggr ( \sum _{j=1}^{l-1}\omega _j-\sum _{j=l}^K\omega _j\biggr ), \end{aligned}$$

    and, hence,

    $$\begin{aligned}&\frac{\sum _{j=1}^{l-1}\omega _j-\sum _{j=l}^K\omega _j}{\sum _{j=1}^{l-1}L_j- \sum _{j=l}^KL_j} >\frac{\sum _{j=1}^{l-1}\omega _j-\sum _{j=l}^K\omega _j+2 \omega _l}{\sum _{j=1}^{l-1}L_j-\sum _{j=l}^KL_j+2L_l}\nonumber \\&\quad \,=\frac{ \sum _{j=1}^l\omega _j-\sum _{j=l+1}^K\omega _j}{\sum _{j=1}^lL_j- \sum _{j=l+1}^KL_j}, \end{aligned}$$

    which derives \(\rho ^{\dagger }(l, l)<\rho ^{\dagger }(l, l-1)\).

  3. (iii)

    In a similar manner to (ii), we have

    $$\begin{aligned} 0<\omega _{l}\biggr (\sum _{j=1}^{l}L_{j}-\sum _{j=l+1}^{K}L_{j}\biggr )<L_{l} \biggr (\sum _{j=1}^{l}\omega _{j}-\sum _{j=l+1}^{K}\omega _{j}\biggr ) \end{aligned}$$

since \(\sum _{j=1}^{l}L_{j}>\sum _{j=l+1}^{K}L_{j}\). Therefore, the last term of (14) is positive, and, thus, \(\rho ^{\dagger }(i,l)>0\) holds for any \(i\).\(\square \)

Appendix C: Proof of Lemma 2

(Necessity) Let \(\varvec{\lambda }^{*}\) be an equilibrium of pattern (a), in which \(l\) industries \(i_{1},\ldots ,i_{l}\) agglomerate in region \(H\) and \(K-l\) industries \(i_{l+1},\ldots ,i_{K}\) agglomerate in region \(F\). Then, for each industry \(i\), it holds that

$$\begin{aligned} V_{iH}(\varvec{\lambda }^{*})&-V_{iF}(\varvec{\lambda }^{*})=-\frac{ 1}{2}\sum \limits _{j=1}^{l}\delta _{ii_{j}}+\frac{1}{2}\sum \limits _{j=l+1}^{K}\delta _{ii_{j}} \\&= -\frac{1}{2}\biggr \{\frac{\rho }{2}\biggr (\sum _{j=1}^{l}L_{i_{j}}- \sum _{j=l+1}^{K}L_{i_{j}}\biggr )-\frac{2ab\overline{L}}{(2b-c)^{2}}\biggr [b \biggr (\sum _{j=1}^{l}\omega _{i_{j}}-\sum _{j=l+1}^{K}\omega _{i_{j}}\biggr )\\&+(2b-c)\biggr (\sum _{j=1}^{l}L_{i_{j}}-\sum _{j=l+1}^{K}L_{i_{j}}\biggr ) \frac{\omega _{i}}{L_{i}}\biggr ]\biggr \}\tau +O(\tau ^{2}). \end{aligned}$$

For a sufficiently small \(\tau \), the sign of the above expression is determined by the coefficient of \(\tau \). Because of (11), the populations of two regions are different, and, hence, \( \sum _{j=1}^{l}L_{i_{j}}>\sum _{j=l+1}^{K}L_{i_{j}}\), because of our naming that \(H\) is not smaller than \(F\). Since industries \(i_{1},\ldots ,i_{l}\) are in \(H\), the stability conditions requires \(V_{i_{j}H}(\varvec{\lambda } ^{*})-V_{i_{j}F}(\varvec{\lambda }^{*})\ge 0\) for \(j=1,\ldots ,l\), which implies

$$\begin{aligned} \rho \le \frac{4ab\overline{L}}{2b-c}\biggr [\frac{\omega _{i_{k}}}{L_{i_{k}} }+\frac{b}{2b-c}\frac{\sum \nolimits _{j=1}^{l}\omega _{i_{j}}-\sum \nolimits _{j=l+1}^{K}\omega _{i_{j}}}{\sum \nolimits _{j=1}^{l}L_{i_{j}}-\sum \nolimits _{j=l+1}^{K}L_{i_{j}}}\biggr ] \text{ for} k=1,\ldots ,l, \end{aligned}$$
(26)

On the other hand, since industries \(i_{l+1},\ldots ,i_{K}\) are in \(F\), we have \(V_{i_{j}H}(\varvec{\lambda }^{*})-V_{i_{j}F}(\varvec{\lambda } ^{*})\le 0\) for \(j=l+1,\ldots ,K\), which implies

$$\begin{aligned} \rho \ge \frac{4ab\overline{L}}{2b-c}\biggr [\frac{\omega _{i_{k}}}{L_{i_{k}} }+\frac{b}{2b-c}\frac{\sum \nolimits _{j=1}^{l}\omega _{i_{j}}-\sum \nolimits _{j=l+1}^{K}\omega _{i_{j}}}{\sum \nolimits _{j=1}^{l}L_{i_{j}}-\sum \nolimits _{j=l+1}^{K}L_{i_{j}}}\biggr ] \text{ for} k=l+1,\ldots ,K.\qquad \end{aligned}$$
(27)

The following inequality holds directly from (26) and (27):

$$\begin{aligned} \min \biggr \{\frac{\omega _{i_{1}}}{L_{i_{1}}},\ldots ,\frac{\omega _{i_{l}} }{L_{_{l}}}\biggr \}\ge \max \biggr \{\frac{\omega _{i_{l+1}}}{L_{i_{l+1}}} ,\ldots ,\frac{\omega _{i_{K}}}{L_{i_{K}}}\biggr \}. \end{aligned}$$
(28)

From (13), (28) tells us that \(i_{l}=l\ge l_{\sharp }\), the industries located in \(H\) turn out to be \(1,\ldots ,l\), and the industries located in \(F\) turn out to be \(l+1,\ldots ,K\). Therefore, (26) and ( 27) are summarized as \(\rho \in [\rho ^{\dagger }(l+1,l),\rho ^{\dagger }(l,l)]\). Note that Lemma 1 (i) and (iii) imply that \(0<\rho ^{\dagger }(l+1,l)<\rho ^{\dagger }(l,l)\).

(Sufficiency) Let \(l\) be an industry satisfying \(l\ge l_{\sharp }\) and \( \rho \in (\rho ^{\dagger }(l+1,l),\rho ^{\dagger }(l,l))\), and let \(\varvec{ \lambda }^{*}\) be the distribution in which industries \(1,\ldots ,l\) agglomerate in region \(H\) and industries \(l+1,\ldots ,K\) agglomerate in region \(F\). Then,

$$\begin{aligned} V_{iH}(\varvec{\lambda }^{*})&-V_{iF}(\varvec{\lambda }^{*})=-\frac{ 1}{2}\sum \limits _{j=1}^{l}\delta _{ij}+\frac{1}{2}\sum \limits _{j=l+1}^{K}\delta _{ij} \\&= -\frac{1}{2}\biggr \{\frac{\rho }{2}\biggr (\sum _{j=1}^{l}L_{j}- \sum _{j=l+1}^{K}L_{j}\biggr )-\frac{2ab\overline{L}}{(2b-c)^{2}}\biggr [b \biggr (\sum _{j=1}^{l}\omega _{j}-\sum _{j=l+1}^{K}\omega _{j}\biggr ) \\&+(2b-c)\biggr (\sum _{j=1}^{l}L_{j}-\sum _{j=l+1}^{K}L_{j}\biggr )\frac{\omega _{i}}{L_{i}}\biggr ]\biggr \}\tau +O(\tau ^{2}), \end{aligned}$$

whose sign is determined by the coefficient of \(\tau \) for a sufficiently small \(\tau \). From \(\rho \in (\rho ^{\dagger }(l+1,l),\rho ^{\dagger }(l,l)) \), we have

$$\begin{aligned} \rho&< \frac{4ab\overline{L}}{2b-c}\biggr [\frac{\omega _{i}}{L_{i}}+\frac{b }{2b-c}\frac{\sum \nolimits _{j=1}^{l}\omega _{j}-\sum \nolimits _{j=l+1}^{K}\omega _{j}}{\sum \nolimits _{j=1}^{l}L_{j}-\sum \nolimits _{j=l+1}^{K}L_{j}}\biggr ] \text{ for} i=1,\ldots ,l, \\ \rho&> \frac{4ab\overline{L}}{2b-c}\biggr [\frac{\omega _{i}}{L_{i}}+\frac{b }{2b-c}\frac{\sum \nolimits _{j=1}^{l}\omega _{j}-\sum \nolimits _{j=l+1}^{K}\omega _{j}}{\sum \nolimits _{j=1}^{l}L_{j}-\sum \nolimits _{j=l+1}^{K}L_{j}}\biggr ] \text{ for} i=l+1,\ldots ,K. \end{aligned}$$

Furthermore, since \(\sum _{j=1}^{l}L_{j}>\sum _{j=l+1}^{K}L_{j}\), we soon obtain \(V_{iH}(\varvec{\lambda }^{*})-V_{iF}(\varvec{\lambda }^{*})>0 \) for \(i=1,\ldots ,l\) and \(V_{iH}(\varvec{\lambda }^{*})-V_{iF}( \varvec{\lambda }^{*})<0\) for \(i=l+1,\ldots ,K\); therefore, \(\varvec{ \lambda }^{*}\) is a stable equilibrium.\(\square \)

Appendix D: Proof of Lemma 3

(Necessity) Consider a stable equilibrium \(\varvec{\lambda }^{*}\), in which industries \(i_{1},\ldots ,i_{l_{1}}\) are located in region \(H\) and industries \(j_{1},\ldots ,j_{l_{2}}\) are located in region \(F\), while industry \(l\) disperses with population \(\lambda _{l}^{*}L_{l}\) in region \(H\). Then, \(l_{1}+l_{2}+1=K\) and \(V_{lH}(\varvec{\lambda }^{*})-V_{lF}( \varvec{\lambda }^{*})=0\), from which we have

$$\begin{aligned} \lambda _{l}^{*}&= \frac{1}{2}-\frac{1}{2\delta _{ll}}\biggr ( \sum \limits _{k=1}^{l_{1}}\delta _{li_{k}}-\sum \limits _{k=1}^{l_{2}}\delta _{lj_{k}}\biggr ) \nonumber \\&= -\frac{1}{2\delta _{ll}}\biggr [\mu _{1}\Omega _{1}-\mu _{2}\Omega _{2}+ \frac{\Lambda }{L_{l}}\big (\omega _{l}^{2}\xi _{1}-\omega _{l}\xi _{2}+\frac{ 1}{2}\rho \tau L_{l}\big )\biggr ]+\frac{1}{2} \end{aligned}$$
(29)
$$\begin{aligned}&= \frac{\mathcal{C }+\mathcal{D }\tau }{\mathcal{E }+\mathcal{F }\tau }, \end{aligned}$$
(30)

where

$$\begin{aligned} \Omega _{1}&\equiv \sum _{k=1}^{l_{1}}\omega _{i_{k}}^{2}-\sum _{k=1}^{l_{2}}\omega _{j_{k}}^{2},\ \ \Omega _{2}\equiv \sum _{k=1}^{l_{1}}\omega _{i_{k}}-\sum _{k=1}^{l_{2}}\omega _{j_{k}}, \Lambda \equiv \sum _{k=1}^{l_{1}}L_{i_{k}}-\sum _{k=1}^{l_{2}}L_{j_{k}}\qquad \quad \end{aligned}$$
(31)
$$\begin{aligned} \mathcal{C }&\equiv 4ab^{2}\overline{L}L_{l}(\Omega _{2}-\omega _{l})-(\Lambda -L_{l})(2b-c)[(2b-c)L_{l}\rho -4ab\overline{L}\omega _{l}] \nonumber \\ &= (2b-c)^{2}L_{l}(\Lambda -L_{l})[\rho ^{\dagger }(l,l-1)-\rho ] \end{aligned}$$
(32)
$$\begin{aligned} \mathcal{D }&\equiv \overline{L}\{2b^{2}(b-c)L_{l}(\omega _{l}^{2}-\Omega _{1})+\omega _{l}^{2}b(2b-c)[c\overline{L}+2(b-c)(L_{l}-\Lambda )]\} \nonumber \\ \mathcal{E }&= 2L_{l}[(2b-c)^{2}L_{l}\rho -4ab(3b-c)\overline{L}\omega _{l}] \nonumber \\ &= \mathcal{C }+(2b-c)^{2}L_{l}(\Lambda +L_{l})[\rho -\rho ^{\dagger }(l,l)] \\ \mathcal{F }&\equiv 2b\omega _{l}^{2}\overline{L}L_{l}\biggr [2(b-c)(3b-c)+ \frac{c(2b-c)\overline{L}}{L_{l}}\biggr ] \nonumber \end{aligned}$$
(33)

Noteworthily, \(\mathcal{E }=0\) holds only if \(\rho =4ab(3b-c)\overline{L} \omega _{l}/[(2b-c)^{2}L_{l}\rho ]\), which implies \(\mathcal{C }=4ab^{2} \overline{L}(L_{l}\Omega _{2}-\Lambda \omega _{l})\ne 0\) according to (12), so that (30) is infinitely large for small \(\tau \). Meanwhile, \(\lambda _{l}^{*}\) of (30) is inside \([0,1]\). Therefore, we can exclude the case of \(\mathcal{E }=0\) for the discussion on the case of a small \(\tau \), which we focus on. Let

$$\begin{aligned} \bar{\lambda }_{l}\equiv \lim _{\tau \rightarrow 0}\lambda _{l}^{*}=\frac{\mathcal{C }}{\mathcal{E }}. \end{aligned}$$
(34)

For equilibrium \(\varvec{\lambda }^{*}\) to be stable, one necessary condition is that

$$\begin{aligned} \frac{\partial [V_{lH}(\varvec{\lambda }^{*})-V_{lF}(\varvec{ \lambda }^{*})]}{\partial \lambda _{l}}=-\delta _{ll}=-\frac{\tau }{ 4(2b-c)^{2}L_{l}}(\mathcal{E }+\mathcal{F }\tau )\le 0. \end{aligned}$$
(35)

Note that the above inequality also implies \(\mathcal{E }>0\).

By the naming of regions, \(H\) is larger than \(F\), which is expressed as follows:

$$\begin{aligned} \sum _{k=1}^{l_{1}}L_{i_{k}}+\lambda _{l}^*L_{l}\ge \sum _{k=1}^{l_{2}}L_{j_{k}}+(1-\lambda _{l}^*)L_{l}. \end{aligned}$$
(36)

For sufficiently small \(\tau \), (36) is rewritten as

$$\begin{aligned} \frac{\Lambda }{L_l}\ge 1-2\bar{\lambda }_l=\lim _{\tau \rightarrow 0}\frac{1}{ \delta _{ll}} \biggr (\sum _{k=1}^{l_1}\delta _{li_k}-\sum _{k=1}^{l_2} \delta _{lj_k}\biggr ) =\lim _{\tau \rightarrow 0}-\frac{\displaystyle -\mu _2\Omega _2-\frac{\omega _l}{L_l}\xi _2\Lambda +\frac{\rho }{2}\tau \Lambda }{ \displaystyle -\omega _l(\mu _2+\xi _2)+\frac{\rho }{2}L_l\tau }, \end{aligned}$$

which turns out to be

$$\begin{aligned} \frac{\Omega _2}{\Lambda }>\frac{\omega _{l}}{L_l} \end{aligned}$$
(37)

according to (35) and the assumption of (12).

On the other hand, the utility differential is calculated as

$$\begin{aligned} V_{iH}(\varvec{\lambda }^*)-V_{iF}(\varvec{\lambda }^*)&= -\frac{1}{2} \sum \limits _{k=1}^{l_1}\delta _{ii_k}+\frac{1}{2}\sum \limits _{k=1}^{l_2} \delta _{ij_k}+ \frac{\delta _{il}}{2\delta _{ll}}\biggr ( \sum \limits _{k=1}^{l_1}\delta _{li_k}- \sum \limits _{k=1}^{l_2}\delta _{lj_k}\biggr ) \\&= -\frac{1}{2\delta _{ll}}\biggr ( \sum \limits _{k=1}^{l_1}\left| \begin{array}{cc} \delta _{ii_k}&\delta _{il} \\ \delta _{li_k}&\delta _{ll} \end{array} \right|- \sum \limits _{k=1}^{l_2}\left| \begin{array}{cc} \delta _{ij_k}&\delta _{il} \\ \delta _{lj_k}&\delta _{ll} \end{array} \right|\biggr ) \\&= \frac{1}{2\delta _{ll}}\biggr [\frac{\Lambda }{L_l} \biggr (\frac{\omega _i}{L_i }-\frac{\omega _l}{L_l}\biggr ) \biggr (\frac{\Omega _2}{\Lambda }-\frac{\omega _l }{L_l}\biggr ) \mu _2\xi _2+O(\tau ^3)\biggr ] \end{aligned}$$

for any \(i\ne l\). Therefore, two other stability conditions of equilibrium \( \varvec{\lambda }^{*}\)

$$\begin{aligned} \begin{array}{ll} V_{iH}(\varvec{\lambda }^{*})-V_{iF}(\varvec{\lambda }^{*})\ge 0&\text{ for} i=i_1,\ldots , i_l \\ V_{jH}(\varvec{\lambda }^{*})-V_{jF}(\varvec{\lambda }^{*})\le 0&\text{ for} j=1,\ldots ,l_{2} \end{array} \end{aligned}$$
(38)

are simply rewritten as

$$\begin{aligned} \frac{\omega _{i}}{L_{i}}>\frac{\omega _{l}}{L_{l}}>\frac{\omega _{j}}{L_{j}} , \text{ for} \text{ any} i=i_{1},\ldots ,i_{l_{1}} \text{ and} j=j_{1},\ldots ,j_{l_{2}}. \end{aligned}$$

Therefore, the industries in region \(H\) turn out to be \(1,\ldots ,l-1\), and the industries in region \(F\) turn out to be \(l+1,\ldots ,K\). Furthermore, \( l\ge l_{\sharp }\) because of (36).

Now, we derive (17). First, \(\rho >\rho ^{\dagger }(l,l)\) holds from (33), (16) and the facts of \(\bar{\lambda }_{l}\le 1\). If \(l>l_{\sharp }\), then \(l-1\ge l_{\sharp }\) so that \(\Lambda >L_l\) holds from the first inequality of (15). Then, \(\rho <\rho ^{\dagger }(l,l-1)\) holds from (32), (16) and the fact of \( \bar{\lambda }_{l}\ge 0\).

(Sufficiency) Consider a distribution \(\varvec{\lambda }^*\) such that industry \(l\ge l_{\sharp }\) disperses with population \(\lambda _{l}^{*}L_{l}\) in region \(H\), industries \(1,\ldots ,l-1\) agglomerate in \(H\), industry \(l+1,\ldots ,K\) agglomerate in \(F\), and (17) holds. According to (13), we have \(L_l\omega _i>L_i\omega _l\) and \( L_l\omega _j<L_j\omega _l\) for \(i=1,\ldots , l-1\) and \(j=l+1, \ldots , K\), which implies

$$\begin{aligned} \sum _{i=1}^{l-1}L_l\omega _i-\sum _{j=l+1}^KL_l\omega _j> \sum _{i=1}^{l-1}L_i\omega _l-\sum _{j=l+1}^KL_j\omega _l, \end{aligned}$$

proving (37), in which \(\Omega _2\) and \(\Lambda \) are defined in (31) with industry names \(i_k=k\) and \(j_k=l+k\). We consider two cases separately.

Case (i): If \(l>l_\sharp \), then \(l-1\ge L_\sharp \) so that \(\Lambda >L_l\) from the first inequality of (15). Then, \(\mathcal{E }>\mathcal C >0\) hold from (32) and (33), implying \(\bar{\lambda }_l\in (0,1)\) , defined by (34). On the other hand, \(\delta _{ll}>0\) and ( 38) are immediate results. Therefore, distribution \(\varvec{ \lambda }^*\) is a stable equilibrium.

Case (ii): If \(l=l_{\sharp }\), then \(\Lambda <L_{l}\) from the second inequality of (15). Therefore,

$$\begin{aligned} \frac{\Omega _{2}-\omega _{l}}{\Lambda -L_{l}}-\frac{\Omega _{2}+\omega _{l} }{\Lambda +L_{l}}=\frac{2(\Omega _{2}L_{l}-\omega _{l}\Lambda )}{\Lambda ^{2}-L_{l}^{2}}<0 \end{aligned}$$

holds from (37), implying \(\rho ^{\dagger }(l,l-1)<\rho ^{\dagger }(l,l)\). Thus, \(\rho >\rho ^{\dagger }(l,l-1)\) holds, and we obtain \(\mathcal{C }>0\) and \(\mathcal{E }>0\) again from (32) and (33 ). As in case (i), we have \(\bar{\lambda }_{l}\in (0,1)\), \(\delta _{ll}>0\) and (38).

Finally, from (8), (29), and (31), we have

$$\begin{aligned} \frac{\partial \lambda _{l}^{*}}{\partial \rho }=-\frac{\tau }{4}\frac{ \left( \sum _{k=1}^{l_{1}}L_{i_{k}}+\lambda _{l}^{*}L_{l}\right) -\left[ \sum _{k=1}^{l_{2}}L_{j_{k}}+(1-\lambda _{l}^{*})L_{l}\right] }{\delta _{ll}}\text{.} \end{aligned}$$

We know that the numerator is nonnegative from (36) and that \(\delta _{ll}\) is also nonnegative from (35) if \(\varvec{\lambda }^{*}\) is a stable equilibrium. Thus, we conclude that \(\partial \lambda _{l}^{*}/\partial \rho \le 0\) when \(\varvec{\lambda }^{*}\) is a stable equilibrium. Note that this inequality holds even if \(\tau \) is large. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takatsuka, H., Zeng, DZ. Industrial configuration in an economy with low transportation costs. Ann Reg Sci 51, 593–620 (2013). https://doi.org/10.1007/s00168-013-0553-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00168-013-0553-5

JEL Classification

Navigation