Skip to main content
Log in

High tibial osteotomy to neutral alignment improves medial knee articular cartilage composition

  • KNEE
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

The purpose of this study was to: (1) test the hypothesis that HTO improves articular cartilage composition in the medial compartment without adversely affecting the lateral compartment and patella, and; (2) explore associations between knee alignment and cartilage composition after surgery.

Methods

3T MRI and standing radiographs were obtained from 34 patients before and 1-year after HTO. Articular cartilage was segmented from T2 maps. Mechanical axis angle (MAA), posterior tibial slope, and patellar height were measured from radiographs. Changes in T2 and radiographic measures were assessed using paired t tests, and associations were assessed using Pearson correlation coefficients.

Results

The mean (SD) MAA before and after HTO was − 6.5° (2.4) and 0.6° (3.0), respectively. There was statistically significant shortening [mean (95%CI)] of T2 in the medial femur [− 2.8 ms (− 4.2; − 1.3), p < 0.001] and medial tibia [− 2.2 ms (− 3.3; − 1.0), p < 0.001], without changes in the lateral femur [− 0.5 ms (− 1.6; 0.6), p = 0.3], lateral tibia [0.2 ms (− 0.8; 1.1), p = NS], or patella [0.5 ms (− 1.0; 2.1), p = NS). Associations between radiographic measures and T2 were low. 23% of the increase in lateral femur T2 was explained by postoperative posterior tibial slope (r = 0.48).

Conclusion

Performing medial opening wedge HTO without overcorrection improves articular cartilage composition in the medial compartment of the knee without compromising the lateral compartment or the patella. Although further research is required, these results suggest HTO is a disease structure-modifying treatment for knee OA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

Data are available upon request.

Code/software availability

This study used an in-house proprietary program to measure radiographic angles, and 3D Slicer, an open-source medical imaging processing platform.

References

  1. Agneskirchner JD, Hurschler C, Stukenborg-Colsman C, Imhoff AB, Lobenhoffer P (2004) Effect of high tibial flexion osteotomy on cartilage pressure and joint kinematics: a biomechanical study in human cadaveric knees. Arch Orthop Trauma Surg 124(9):575–584

    Article  CAS  PubMed  Google Scholar 

  2. Altman R, Asch E, Bloch D, Bole G, Borenstein D, Brandt K et al (1986) Development of criteria for the classification and reporting of osteoarthritis: classification of osteoarthritis of the knee. Arthritis Rheum 29(8):1039–1049

    Article  CAS  PubMed  Google Scholar 

  3. Atkinson HF, Birmingham TB, Moyer RF, Yacoub D, Kanko LE, Bryant DM et al (2019) MRI T2 and T1ρ relaxation in patients at risk for knee osteoarthritis: a systematic review and meta-analysis. BMC Musculoskelet Disord 20(1):1–18

    Article  CAS  Google Scholar 

  4. Besselink NJ, Vincken KL, Bartels LW, van Heerwaarden RJ, Concepcion AN, Marijnissen ACA et al (2020) Cartilage quality (dGEMRIC index) following knee joint distraction or high tibial osteotomy. Cartilage 11(1):19–31

    Article  PubMed  Google Scholar 

  5. Bick F, Iffland Y, Zimmermann E, Welsch F, Hoffmann R, Stein T (2019) The medial open wedge osteotomy generates progressive intrameniscal integrity changes in the lateral knee compartment: a prospective MR-assessment after valgic osteotomy in the varus gonarthritic knee. Knee Surg Sports Traumatol Arthrosc 27(4):1339–1346

    Article  CAS  PubMed  Google Scholar 

  6. Birmingham TB, Moyer R, Leitch K, Chesworth B, Bryant D, Willits K et al (2017) Changes in biomechanical risk factors for knee osteoarthritis and their association with 5-year clinically important improvement after limb realignment surgery. Osteoarthr Cartil 25(12):1999–2006

    Article  CAS  Google Scholar 

  7. Brazier J, Migaud H, Gougeon F, Cotten A, Fontaine C, Duquennoy A (1996) Evaluation des methodes de mesure radiographique de la pente tibiale. Analyse de 83 genoux temoins. Rev Chir Orthop Reparatrice Appar Mot 82(3):195–200

    CAS  PubMed  Google Scholar 

  8. Burstein D, Velyvis J, Scott KT, Stock KW, Kim Y, Jaramillo D et al (2001) Protocol issues for delayed Gd(DTPA)2–-enhanced MRI (dGEMRIC) for clinical evaluation of articular cartilage. Magn Reson Med 45(1):36–41

    Article  CAS  PubMed  Google Scholar 

  9. Dell'accio F, Vincent TL (2010) Joint surface defects: clinical course and cellular response in spontaneous and experimental lesions. Eur Cell Mater 20:210–217

    Article  CAS  PubMed  Google Scholar 

  10. Ding C, Cicuttini F, Jones G (2008) How important is MRI for detecting early osteoarthritis? Nat Clin Pract Rheumatol 4(1):4–5

    Article  PubMed  Google Scholar 

  11. Ding C, Cicuttini F, Scott F, Cooley H, Boon C, Jones G (2006) Natural history of knee cartilage defects and factors affecting change. Arch Intern Med 166(6):651–658

    Article  PubMed  Google Scholar 

  12. Dugdale TW, Noyes FR, Styer D (1992) Preoperative planning for high tibial osteotomy: the effect of lateral tibiofemoral separation and tibiofemoral length. Clin Orthop Relat Res 274:248–264

    Article  Google Scholar 

  13. Dunn TC, Lu Y, Jin H, Ries MD, Majumdar S (2004) T2 relaxation time of cartilage at MR imaging: comparison with severity of knee osteoarthritis. Radiology 232(2):592–598

    Article  PubMed  Google Scholar 

  14. Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S et al (2012) 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging 30(9):1323–1341

    Article  PubMed  PubMed Central  Google Scholar 

  15. Fening SD, Kovacic J, Kambic H, McLean S, Scott J, Miniaci A (2008) The effects of modified posterior tibial slope on anterior cruciate ligament strain and knee kinematics: a human cadaveric study. J Knee Surg 21(3):205–211

    Article  PubMed  PubMed Central  Google Scholar 

  16. Filardo G, Zaffagnini S, De Filippis R, Perdisa F, Andriolo L, Candrian C (2018) No evidence for combining cartilage treatment and knee osteotomy in osteoarthritic joints: a systematic literature review. Knee Surg Sports Traumatol Arthrosc 26(11):3290–3299

    Article  CAS  PubMed  Google Scholar 

  17. Hernigou P, Ma W (2001) Open wedge tibial osteotomy with acrylic bone cement as bone substitute. Knee 8(2):103–110

    Article  CAS  PubMed  Google Scholar 

  18. Hinterwimmer S, Beitzel K, Paul J, Kirchhoff C, Sauerschnig M, von Eisenhart-Rothe R, Imhoff AB (2011) Control of posterior tibial slope and patellar height in open-wedge valgus high tibial osteotomy. Am J Sports Med 39(4):851–856

    Article  PubMed  Google Scholar 

  19. Hui C, Thompson S, Giffin J (2019) Knee Arthritis. In: DeLee JC, Drez D, Miller MD (eds) DeLee, Drez and Miller’s orthopaedic sports medicine, 5th edn. Elsevier, Philadelphia, pp 1277–1292

    Google Scholar 

  20. Hulley S, Cummings S, Browner W, Grady D, Newman T (2013) Designing Clinical Research: an epidemiological approach, 4th ed. pp. Appendix 6C, 79. Lippincott Williams and Wilkins, Philadelphia

    Google Scholar 

  21. Insall J, Salvati E (1971) Patella position in the normal knee joint. Radiology 101(1):101–104

    Article  CAS  PubMed  Google Scholar 

  22. Kanamiya T, Naito M, Hara M, Yoshimura I (2002) The influences of biomechanical factors on cartilage regeneration after high tibial osteotomy for knees with medial compartment osteoarthritis: clinical and arthroscopic observations. Arthroscopy 18(7):725–729

    Article  PubMed  Google Scholar 

  23. Kijowski R, Blankenbaker DG, Munoz del Rio A, Baer GS, Graf BK (2013) Evaluation of the articular cartilage of the knee joint: value of adding a T2 mapping sequence to a routine MR imaging protocol. Radiology 267(2):503–513

    Article  PubMed  Google Scholar 

  24. Kumagai K, Akamatsu Y, Kobayashi H, Kusayama Y, Koshino T, Saito T (2017) Factors affecting cartilage repair after medial opening-wedge high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc 25(3):779–878

    Article  PubMed  Google Scholar 

  25. Leitch KM, Birmingham TB, Dunning CE, Giffin JR (2013) Changes in valgus and varus alignment neutralize aberrant frontal plane knee moments in patients with unicompartmental knee osteoarthritis. J Biomech 46(7):1408–1412

    Article  PubMed  Google Scholar 

  26. Liebl H, Joseph G, Nevitt MC, Singh N, Heilmeier U, Subburaj K et al (2015) Early T2 changes predict onset of radiographic knee osteoarthritis: data from the osteoarthritis initiative. Ann Rheum Dis 74(7):1353–1359

    Article  PubMed  Google Scholar 

  27. Longino PD, Birmingham TB, Schultz WJ, Moyer RF, Giffin JR (2013) Combined tibial tubercle osteotomy with medial opening wedge high tibial osteotomy minimizes changes in patellar height: a prospective cohort study with historical controls. Am J Sports Med 41(12):2849–2857

    Article  PubMed  Google Scholar 

  28. Lüssea S, Claassen H, Gehrke T, Hassenpflug J, Schünke M, Heller M, Glüer CC (2000) Evaluation of water content by spatially resolved transverse relaxation times of human articular cartilage. Magn Reson Imaging 18(4):423–430

    Article  Google Scholar 

  29. MacKay JW, Low SBL, Smith TO, Toms AP, McCaskie AW, Gilbert FJ (2018) Systematic review and meta-analysis of the reliability and discriminative validity of cartilage compositional MRI in knee osteoarthritis. Osteoarthr Cartil 26(9):1140–1152

    Article  CAS  Google Scholar 

  30. Menezes N, Gray ML, Hartke JR, Deborah B (2004) T2 and T1ρ MRI in articular cartilage systems. Magn Reson Med 51(3):503–509

    Article  CAS  PubMed  Google Scholar 

  31. Mosher TJ, Dardzinski BJ (2004) Cartilage MRI T2 relaxation time mapping: overview and applications. Semin Musculoskelet Radiol 8:355–368

    Article  PubMed  Google Scholar 

  32. Moyer R, Birmingham T, Eckstein F, Wirth W, Maschek S, Chronik B, Giffin JR (2019) Validation of a novel blinding method for measuring postoperative knee articular cartilage using magnetic resonance imaging. MAGMA 32(6):693–702

    Article  CAS  PubMed  Google Scholar 

  33. Nakayama H, Schröter S, Yamamoto C, Iseki T, Kanto R, Kurosaka K, Kambara S, Yoshiya S, Higa M (2018) Large correction in opening wedge high tibial osteotomy with resultant joint-line obliquity induces excessive shear stress on the articular cartilage. Knee Surg Sports Traumatol Arthrosc 26(6):1873–1878

    Article  PubMed  Google Scholar 

  34. Nieminen MT, Rieppo J, Töyräs J, Hakumäki JM, Silvennoinen J, Hyttinen MM et al (2001) T2 relaxation reveals spatial collagen architecture in articular cartilage: a comparative quantitative MRI and polarized light microscopic study. Magn Reson Med 46(3):487–493

    Article  CAS  PubMed  Google Scholar 

  35. Nishioka H, Nakamura E, Hirose J, Okamoto N, Yamabe S, Mizuta H (2016) MRI T1ρ and T2 mapping for the assessment of articular cartilage changes in patients with medial knee osteoarthritis after hemicallotasis osteotomy. Bone Jt Res 5(7):294–300

    Article  CAS  Google Scholar 

  36. Noyes FR, Stabler CL (1989) A system for grading articular cartilage lesions at arthroscopy. Am J Sports Med 17(4):505–513

    Article  CAS  PubMed  Google Scholar 

  37. Parker DA, Beatty KT, Giuffre B, Scholes CJ, Coolican MRJ (2011) Articular cartilage changes in patients with osteoarthritis after osteotomy. Am J Sports Med 39(5):1039–1045

    Article  PubMed  Google Scholar 

  38. Prasad AP, Nardo L, Schooler J, Joseph GB, Link TM (2013) T1ρ and T2 relaxation times predict progression of knee osteoarthritis. Osteoarthr Cartil 21(1):69–76

    Article  CAS  Google Scholar 

  39. Rutgers M, Bartels LW, Tsuchida AI, Castelein RM, Dhert WJ, Vincken KL et al (2012) DGEMRIC as a tool for measuring changes in cartilage quality following high tibial osteotomy: a feasibility study. Osteoarthr Cartil 20(10):1134–1141

    Article  CAS  Google Scholar 

  40. Specogna A, Birmingham T, DaSilva J, Milner J, Kerr J, Hunt M et al (2010) Reliability of lower limb frontal plane alignment measurements using plain radiographs and digitized images. J Knee Surg 17(4):203–210

    Article  Google Scholar 

  41. Suero EM, Hawi N, Westphal R, Sabbagh Y, Citak M, Wahl FM et al (2017) The effect of distal tibial rotation during high tibial osteotomy on the contact pressures in the knee and ankle joints. Knee Surg Sports Traumatol Arthrosc 25(1):299–305

    Article  PubMed  Google Scholar 

  42. van der Woude JAD, Wiegant K, van Heerwaarden RJ, Spruijt S, van Roermund PM, Custers RJH, Mastbergen SC, Lafeber FPJG (2017) Knee joint distraction compared with high tibial osteotomy: a randomized controlled trial. Knee Surg Sports Traumatol Arthrosc 25(3):876–886

    Article  PubMed  Google Scholar 

  43. Vincent T (2020) Of mice and men: converging on a common molecular understanding of osteoarthritis. Lancet Rheum 2(10):633–645

    Article  Google Scholar 

  44. Watt FE, Hamid B, Garriga C, Judge A, Hrusecka R, Custers RJH et al (2020) The molecular profile of synovial fluid changes upon joint distraction and is associated with clinical response in knee osteoarthritis. Osteoarthr Cartil 28(3):324–333

    Article  CAS  Google Scholar 

  45. Wiegant K, Van Roermund PM, Intema F, Cotofana S, Eckstein F, Mastbergen SC, Lafeber F (2013) Sustained clinical and structural benefit after joint distraction in the treatment of severe knee osteoarthritis. Osteoarthr Cartil 21(11):1660–1667

    Article  CAS  Google Scholar 

  46. Ziegler R, Goebel L, Cucchiarini M, Pape D, Madry H (2014) Effect of open wedge high tibial osteotmy on the lateral tibiofemoral compartment in sheep. Part II: standard and overcorrection do not cause articular cartilage degeneration. Knee Surg Sports Traumatol Arthrosc 22(7):1666–1677

    Article  PubMed  Google Scholar 

  47. Ziegler R, Goebel L, Seidel R, Cucchiarini M, Pape D, Madry H (2015) Effect of open wedge high tibial osteotmy on the lateral tibiofemoral compartment in sheep. Part III: analysis of the microstructure of the subchondral bone and correlations with the articular cartilage and meniscus. Knee Surg Sports Traumatol Arthrosc 23(9):2704–2714

    Article  PubMed  Google Scholar 

Download references

Funding

This study was funded in part by the Canadian Institutes of Health Research, The Arthritis Society, the Western University Bone & Joint Insitute, the Canada Research Chairs program, and the Centre for Functional and Metabolic Mapping Internal Research Fund and Brain Canada.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to either the conception, design, data collection, or analysis. Each author contributed to the final version of the manuscript and has seen this document.

Corresponding author

Correspondence to Trevor B. Birmingham.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study was approved by the institution’s Research Ethics Board for Health Science Research Involving Human Subjects.

Informed consent

All participants provided informed consent for participation in the study.

Consent for publication

All participants provided informed consent for publication of the results of the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atkinson, H.F., Birmingham, T.B., Schulz, J.M. et al. High tibial osteotomy to neutral alignment improves medial knee articular cartilage composition. Knee Surg Sports Traumatol Arthrosc 30, 1065–1074 (2022). https://doi.org/10.1007/s00167-021-06516-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-021-06516-9

Keywords

Navigation