Skip to main content
Log in

Implant survival of 3rd-condyle and post-cam posterior-stabilised total knee arthroplasty are comparable at follow-up > 10 years: a systematic review

  • KNEE
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

To summarise the literature on 3rd-condyle total knee arthroplasty (TKA) designs and compare their survival rates to those of post-cam TKA designs. The null hypothesis was that 3rd-condyle TKAs would have equivalent survival rates compared to contemporary post-cam TKAs.

Methods

An electronic literature search for Level I–V studies was independently conducted by two researchers using Medline® and Web of Science for studies published between January 1984 and October 2020 that specifically reported on rates of implant survival and complications, joint kinematics, clinical outcomes, and radiographic outcomes of 3rd-condyle TKA. The methodological quality of clinical studies was assessed according to the Downs and Black Quality Checklist for Health Care Intervention Studies, and for in vitro and in silico studies according to the Joanna Briggs Institute (JBI) tool for assessing analytical cross-sectional studies. Findings extracted for each TKA design were presented as reported and synthesised narratively. Survival rates at 5, 10 and > 10 years of 3rd-condyle TKA designs were graphically compared to rates of post-cam TKA designs published in joint registries.

Results

A total of 38 studies were identified that reported on kinematics, clinical outcomes, radiographic alignment, and rates of complications and survival. Mean survival rates ranged from 96 to 98% at 5 years, 78–100% at 5–10 years, and 86–99% at > 10 years for 3rd-condyle PS TKAs. Mean survival rates ranged from 93 to 98% at 5 years, 89–99% at 5–10 years, and 88–95% at > 10 years for post-cam PS TKAs.

Conclusion

Implant survival rates of 3rd-condyle TKAs are comparable to those of post-cam TKAs at follow-up > 10 years. When compared to post-cam PS TKA, 3rd-condyle designs offer an alternative for younger and more active patients when considering the added benefits of a lowered point-of-contact and larger congruent contact area at the intercondylar tibial sulcus, that reduce risks of loosening and component wear.

Level of evidence

V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. [3, 8, 9, 11, 14, 15, 17, 19,20,21,22, 25, 29, 35, 38,39,40,41,42,43,44,45,46,47,48, 50, 52, 54, 57,58,59,60,61,62, 64, 65, 67, 70].

References

  1. Abdeen AR, Collen SR, Vince KG (2010) Fifteen-year to 19-year follow-up of the Insall-Burstein-1 total knee arthroplasty. J Arthroplasty 25(2):173–178

    PubMed  Google Scholar 

  2. Aglietti P, Buzzi R, De Felice R, Giron F (1999) The Insall-Burstein total knee replacement in osteoarthritis: a 10-year minimum follow-up. J Arthroplasty 14(5):560–565

    CAS  PubMed  Google Scholar 

  3. Akasaki Y, Matsuda S, Shimoto T, Miura H, Higaki H, Iwamoto Y (2008) Contact stress analysis of the conforming post-cam mechanism in posterior-stabilized total knee arthroplasty. J Arthroplasty 23(5):736–743

    PubMed  Google Scholar 

  4. Alatassi R, Alattas MH, Koaban S, Abdullah S, Ahmed B (2018) Posterior dislocation of a constrained total knee arthroplasty: A case report. Ann Med Surg (Lond) 34:50–53

    Google Scholar 

  5. Arnout N, Vandenneucker H, Bellemans J (2011) Posterior dislocation in total knee replacement: a price for deep flexion? Knee Surg Sports Traumatol Arthrosc 19(6):911–913

    PubMed  Google Scholar 

  6. Arnout N, Vanlommel L, Vanlommel J, Luyckx JP, Labey L, Innocenti B, Victor J, Bellemans J (2015) Post-cam mechanics and tibiofemoral kinematics: a dynamic in vitro analysis of eight posterior-stabilized total knee designs. Knee Surg Sports Traumatol Arthrosc 23(11):3343–3353

    CAS  PubMed  Google Scholar 

  7. Bhan S, Malhotra R, Kiran EK, Shukla S, Bijjawara M (2005) A comparison of fixed-bearing and mobile-bearing total knee arthroplasty at a minimum follow-up of 4.5 years. J Bone Joint Surg Am 87(10):2290–2296

    CAS  PubMed  Google Scholar 

  8. Bignozzi S, Zaffagnini S, Akkawi I, Marko T, Bruni D, Neri MP, Colle F, Marcacci M (2014) Three different cruciate-sacrificing TKA designs: minor intraoperative kinematic differences and negligible clinical differences. Knee Surg Sports Traumatol Arthrosc 22(12):3113–3120

    PubMed  Google Scholar 

  9. Bonnin MP, Schmidt A, Basiglini L, Bossard N, Dantony E (2013) Mediolateral oversizing influences pain, function, and flexion after TKA. Knee Surg Sports Traumatol Arthrosc 21(10):2314–2324

    PubMed  PubMed Central  Google Scholar 

  10. Brassard MF, Insall JN, Scuderi GR, Colizza W (2001) Does modularity affect clinical success? A comparison with a minimum 10-year followup. Clin Orthop 388:26–32

    Google Scholar 

  11. Bytyqi D, Shabani B, Cheze L, Neyret P, Lustig S (2017) Does a third condyle TKA restore normal gait kinematics in varus knees? In vivo knee kinematic analysis. Arch Orthop Trauma Surg 137(3):409–416

    PubMed  Google Scholar 

  12. Callaghan JJ, O’Rourke MR, Goetz DD, Schmalzried TP, Campbell PA, Johnston RC (2002) Tibial post impingement in posterior-stabilized total knee arthroplasty. Clin Orthop 404:83–88

    Google Scholar 

  13. Clarke HD, Math KR, Scuderi GR (2004) Polyethylene post failure in posterior stabilized total knee arthroplasty. J Arthroplasty 19(5):652–657

    PubMed  Google Scholar 

  14. Debette C, Lustig S, Servien E, Lording T, Villa V, Demey G, Neyret P (2014) Total knee arthroplasty of the stiff knee: three hundred and four cases. Int Orthop 38(2):285–289

    PubMed  Google Scholar 

  15. Dejour D, Deschamps G, Garotta L, Djour H (1999) Laxity in posterior cruciate sparing and posterior stabilized total knee prostheses. Clin Orthop 364:182–193

    Google Scholar 

  16. Diamond OJ, Howard L, Masri B (2018) Five cases of tibial post fracture in posterior stabilized total knee arthroplasty using prolong highly cross-linked polyethylene. Knee 25(4):657–662

    PubMed  Google Scholar 

  17. Donell S, Neyret P, Dejour H, Adeleine P (1998) The effect of age on the quality of life after knee replacement. Knee 5(2):125–128

    Google Scholar 

  18. Downs SH, Black N (1998) The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J Epidemiol Community Health 52(6):377–384

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Gaillard R, Bankhead C, Budhiparama N, Batailler C, Servien E, Lustig S (2019) Influence of patella height on total knee arthroplasty: outcomes and survival. J Arthroplasty 34(3):469–477

    PubMed  Google Scholar 

  20. Gaillard R, Cerciello S, Lustig S, Servien E, Neyret P (2017) Risk factors for tibial implant malpositioning in total knee arthrosplasty—consecutive series of one thousand, four hundred and seventeen cases. Int Orthop 41(4):749–756

    PubMed  Google Scholar 

  21. Gaillard R, Lording T, Lustig S, Servien E, Neyret P (2017) Total knee arthroplasty after varus distal femoral osteotomy vs native knee: similar results in a case control study. Knee Surg Sports Traumatol Arthrosc 25(11):3522–3529

    PubMed  Google Scholar 

  22. Gaillard R, Lustig S, Peltier A, Villa V, Servien E, Neyret P (2016) Total knee implant posterior stabilised by a third condyle: Design evolution and post-operative complications. Orthop Traumatol Surg Res 102(8):1061–1068

    CAS  PubMed  Google Scholar 

  23. Hooper P, Jutai JW, Strong G, Russell-Minda E (2008) Age-related macular degeneration and low-vision rehabilitation: a systematic review. Can J Ophthalmol 43(2):180–187

    PubMed  Google Scholar 

  24. Huang CH, Liau JJ, Huang CH, Cheng CK (2006) Influence of post-cam design on stresses on posterior-stabilized tibial posts. Clin Orthop 450:150–156

    PubMed  Google Scholar 

  25. Jan N, Fontaine C, Migaud H, Pasquier G, Valluy J, Saffarini M, Putman S (2019) Patellofemoral design enhancements reduce long-term complications of postero-stabilized total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 27(4):1241–1250

    PubMed  Google Scholar 

  26. Jiang C, Liu Z, Wang Y, Bian Y, Feng B, Weng X (2016) Posterior cruciate ligament retention versus posterior stabilization for total knee arthroplasty: a meta-analysis. PLoS ONE 11(1):e0147865

    PubMed  PubMed Central  Google Scholar 

  27. Johal P, Williams A, Wragg P, Hunt D, Gedroyc W (2005) Tibio-femoral movement in the living knee. A study of weight bearing and non-weight bearing knee kinematics using “interventional” MRI. J Biomech 38(2):269–276

    CAS  PubMed  Google Scholar 

  28. Lachiewicz PF (2011) How to treat a tibial post fracture in total knee arthroplasty? A systematic review Clin Orthop 469(6):1709–1715

    PubMed  Google Scholar 

  29. Lecuire F, Henry J, Francois B, Rubini J, Basso M (2012) Long-term results of Alpina Postero-stabilized total knee replacement: 10- to 16-year follow-up. Eur J Orthop Surg Traumatol 22(8):695–701

    PubMed  Google Scholar 

  30. Li G, Zayontz S, Most E, Otterberg E, Sabbag K, Rubash HE (2001) Cruciate-retaining and cruciate-substituting total knee arthroplasty: an in vitro comparison of the kinematics under muscle loads. J Arthroplasty 16(8 Suppl 1):150–156

    CAS  PubMed  Google Scholar 

  31. Li PL, Zamora J, Bentley G (1999) The results at ten years of the Insall-Burstein II total knee replacement. Clinical, radiological and survivorship studies. J Bone Joint Surg Br 81(4):647–653

    CAS  PubMed  Google Scholar 

  32. Lin KJ, Huang CH, Liu YL, Chen WC, Chang TW, Yang CT, Lai YS, Cheng CK (2011) Influence of post-cam design of posterior stabilized knee prosthesis on tibiofemoral motion during high knee flexion. Clin Biomech (Bristol, Avon) 26(8):847–852

    Google Scholar 

  33. Lizaur-Utrilla A, Gonzalez-Parreño S, Martinez-Mendez D, Miralles-Muñoz FA, Lopez-Prats FA (2020) Minimal clinically important differences and substantial clinical benefits for Knee Society Scores. Knee Surg Sports Traumatol Arthrosc 28(5):1473–1478

    PubMed  Google Scholar 

  34. Long WJ, Bryce CD, Hollenbeak CS, Benner RW, Scott WN (2014) Total knee replacement in young, active patients: long-term follow-up and functional outcome: a concise follow-up of a previous report. J Bone Joint Surg Am 96(18):e159

    PubMed  Google Scholar 

  35. Magnussen RA, Weppe F, Demey G, Servien E, Lustig S (2011) Residual varus alignment does not compromise results of TKAs in patients with preoperative varus. Clin Orthop 469(12):3443–3450

    PubMed  PubMed Central  Google Scholar 

  36. Matsumoto H, Seedhom BB, Suda Y, Otani T, Fujikawa K (2000) Axis location of tibial rotation and its change with flexion angle. Clin Orthop 371:178–182

    Google Scholar 

  37. Moola S, Munn Z, Tufanaru C, Aromataris E, Sears K, Sfetcu R, Currie M, Qureshi R, Mattis P, Lisy K, Mu P-F (2020) Chapter 7: Systematic reviews of etiology and risk. In: Aromataris E, Munn Z (eds) JBI Manual for Evidence Synthesis. JBI

  38. Nakamura S, Ito H, Kobayashi M, Nakamura K, Toyoji U, Komistek RD, Nakamura T (2014) Are the long term results of a high-flex total knee replacement affected by the range of flexion? Int Orthop 38(4):761–766

    PubMed  Google Scholar 

  39. Nakamura S, Ito H, Nakamura K, Kuriyama S, Furu M, Matsuda S (2017) Long-term durability of ceramic tri-condylar knee implants: a minimum 15-year follow-up. J Arthroplasty 32(6):1874–1879

    PubMed  Google Scholar 

  40. Nakamura S, Ito H, Yoshitomi H, Kuriyama S, Komistek RD, Matsuda S (2015) Analysis of the flexion gap on in vivo knee kinematics using fluoroscopy. J Arthroplasty 30(7):1237–1242

    PubMed  Google Scholar 

  41. Nakamura S, Kobayashi M, Ito H, Nakamura K, Ueo T, Nakamura T (2010) The Bi-Surface total knee arthroplasty: minimum 10-year follow-up study. Knee 17(4):274–278

    PubMed  Google Scholar 

  42. Nakamura S, Kuriyama S, Nishitani K, Ito H, Murata K, Matsuda S (2018) Correlation between intraoperative anterior stability and flexion gap in total knee arthroplasty. J Arthroplasty 33(8):2480–2484

    PubMed  Google Scholar 

  43. Nakamura S, Sharma A, Ito H, Nakamura K, Komistek RD (2014) In vivo femoro-tibial kinematic analysis of a tri-condylar total knee prosthesis. Clin Biomech (Bristol, Avon) 29(4):400–405

    Google Scholar 

  44. Nakamura S, Sharma A, Ito H, Nakamura K, Zingde SM, Komistek RD (2015) Kinematic difference between various geometric centers and contact points for tri-condylar bi-surface knee system. J Arthroplasty 30(4):701–705

    PubMed  Google Scholar 

  45. Nakamura S, Sharma A, Kobayashi M, Ito H, Nakamura K, Zingde SM, Nakamura T, Komistek RD (2014) 3D in vivo femoro-tibial kinematics of tri-condylar total knee arthroplasty during kneeling activities. Knee 21(1):162–167

    PubMed  Google Scholar 

  46. Nakamura S, Sharma A, Nakamura K, Ikeda N, Kawai J, Zingde SM, Komistek RD (2015) In vivo kinematic effects of ball and socket third condyle as a post-cam mechanism in tri-condylar knee implants. Knee 22(3):237–242

    PubMed  Google Scholar 

  47. Nakamura S, Sharma A, Nakamura K, Ikeda N, Zingde SM, Komistek RD (2014) Can post-cam function be replaced by addition of a third condyle in PS TKA? J Arthroplasty 29(9):1871–1876

    PubMed  Google Scholar 

  48. Nakamura S, Shima K, Kuriyama S, Nishitani K, Ito H, Matsuda S (2019) Tibial tubercle-trochlear groove distance influences patellar tilt after total knee arthroplasty. J Arthroplasty 34(12):3080–3087

    PubMed  Google Scholar 

  49. Nakayama K, Matsuda S, Miura H, Iwamoto Y, Higaki H, Otsuka K (2005) Contact stress at the post-cam mechanism in posterior-stabilised total knee arthroplasty. J Bone Joint Surg Br 87(4):483–488

    CAS  PubMed  Google Scholar 

  50. Noboru M, Fujii T, Mo JQ, Liang T, Luo ZP, Tanaka Y (2017) In vitro biomechanical evaluation of tri-condylar total knee arthroplasty with posterior release for restoration of full extension. J Orthop Translat 11:1–6

    PubMed  PubMed Central  Google Scholar 

  51. O’Rourke MR, Callaghan JJ, Goetz DD, Sullivan PM, Johnston RC (2002) Osteolysis associated with a cemented modular posterior-cruciate-substituting total knee design : five to eight-year follow-up. J Bone Joint Surg Am 84(8):1362–1371

    PubMed  Google Scholar 

  52. Ode Q, Gaillard R, Batailler C, Herry Y, Neyret P, Servien E, Lustig S (2018) Fewer complications after UKA than TKA in patients over 85 years of age: A case-control study. Orthop Traumatol Surg Res 104(7):955–959

    PubMed  Google Scholar 

  53. Oliver MC, Keast-Butler OD, Hinves BL, Shepperd JA (2005) A hydroxyapatite-coated Insall-Burstein II total knee replacement: 11-year results. J Bone Joint Surg Br 87(4):478–482

    CAS  PubMed  Google Scholar 

  54. Pinaroli A, Piedade SR, Servien E, Neyret P (2009) Intraoperative fractures and ligament tears during total knee arthroplasty. A 1795 posterostabilized TKA continuous series. Orthop Traumatol Surg Res 95(3):183–189

    CAS  PubMed  Google Scholar 

  55. Robinson RP (2005) The early innovators of today’s resurfacing condylar knees. J Arthroplasty 20:2–26

    PubMed  Google Scholar 

  56. Rowley DI, McGurty DW (2001) A seven-year experience of data collection on the Insall-Burstein II total knee arthroplasty. A prospective study. J Bone Joint Surg Br 83(2):185–190

    CAS  PubMed  Google Scholar 

  57. Saffarini M, Demey G, Nover L, Dejour D (2016) Evolution of trochlear compartment geometry in total knee arthroplasty. Ann Transl Med 4(1):7

    PubMed  PubMed Central  Google Scholar 

  58. Saffarini M, Zaffagnini S, Bignozzi S, Colle F, Marcacci M, Dejour D (2015) Does patellofemoral geometry in TKA affect patellar position in mid-flexion? Knee Surg Sports Traumatol Arthrosc 23(6):1799–1807

    Google Scholar 

  59. Sappey-Marinier E, de Abreu FGA, O’Loughlin P, Gaillard R, Neyret P, Lustig S, Servien E (2020) No difference in patellar position between mobile-bearing and fixed-bearing total knee arthroplasty for medial osteoarthritis: a prospective randomized study. Knee Surg Sports Traumatol Arthrosc 28(5):1542–1550

    PubMed  Google Scholar 

  60. Sappey-Marinier E, Swan J, Maucort-Boulch D, Batailler C, Malatray M, Neyret P, Lustig S, Servien E (2020) No significant clinical and radiological differences between fixed versus mobile bearing total knee replacement using the same semi-constrained implant type: a randomized controlled trial with mean 10 years follow-up. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-020-06346-1

    Article  PubMed  Google Scholar 

  61. Sekiguchi K, Nakamura S, Nakamura K, Ito H, Kuriyama S, Nishitani K, Komistek RD, Matsuda S (2020) Varus alignment after total knee arthroplasty results in greater axial rotation during deep knee bend activity. Clin Biomechan 77

  62. Senioris A, Saffarini M, Rahali S, Malekpour L, Dujardin F, Courage O (2016) Does patellofemoral congruence following total knee arthroplasty correlate with pain or function? Intraoperative arthroscopic assessment of 30 cases. Ann Transl Med 4(15):279

    PubMed  PubMed Central  Google Scholar 

  63. Stern SH, Insall JN (1992) Posterior stabilized prosthesis. Results after follow-up of nine to twelve years. J Bone Joint Surg Am 74(7):980–986

    CAS  PubMed  Google Scholar 

  64. Tanaka Y, Nakamura S, Kuriyama S, Ito H, Furu M, Komistek RD, Matsuda S (2016) How exactly can computer simulation predict the kinematics and contact status after TKA? Examination in individualized models. Clin Biomech (Bristol, Avon) 39:65–70

    Google Scholar 

  65. Tayot O, Selmi TAtS, Neyret P, (2001) Results at 11.5 years of a series of 376 posterior stabilized HLS1 total knee replacements Survivorship analysis, and risk factors for failure. Knee 8(3):195–205

    CAS  PubMed  Google Scholar 

  66. Tiwari V, Meshram P, Park CK, Bansal V, Kim TK (2019) New mobile-bearing TKA with unique ball and socket post-cam mechanism offers similar function and stability with better prosthesis fit and gap balancing compared to an established fixed-bearing prosthesis. Knee Surg Sports Traumatol Arthrosc 27(7):2145–2154

    PubMed  Google Scholar 

  67. Ueo T, Kihara Y, Ikeda N, Kawai J, Nakamura K, Hirokawa S (2011) Deep flexion-oriented bisurface-type knee joint and its tibial rotation that attributes its high performance of flexion. J Arthroplasty 26(3):476–482

    PubMed  Google Scholar 

  68. Victor J, Van Doninck D, Labey L, Innocenti B, Parizel PM, Bellemans J (2009) How precise can bony landmarks be determined on a CT scan of the knee? Knee 16(5):358–365

    CAS  PubMed  Google Scholar 

  69. Wing CK, Kwok-Hing C (2012) Sixteen years’ result of posterior-stabilized TKA. J Knee Surg 25(3):245–248

    PubMed  Google Scholar 

  70. Zaffagnini S, Bignozzi S, Saffarini M, Colle F, Sharma B, Kinov PS, Marcacci M, Dejour D (2014) Comparison of stability and kinematics of the natural knee versus a PS TKA with a “third condyle.” Knee Surg Sports Traumatol Arthrosc 22(8):1778–1785

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Jeremy Valluy and Floris van Rooij for assistance during the screening, selection and quality assessment processes.

Funding

The authors are grateful to Ramsay Santé for funding the statistical analysis and manuscript preparation for this study.

Author information

Authors and Affiliations

Authors

Contributions

DD: study design, data interpretation, and manuscript editing. JHM: literature review, data collection, manuscript writing, and figure and tables. MS: study design, literature review, and manuscript writing. MT: designer of the implant and manuscript editing. PC: data interpretation and manuscript editing. GD: data interpretation and manuscript editing. MPB: study design, data interpretation, and manuscript editing.

Corresponding author

Correspondence to Mo Saffarini.

Ethics declarations

Conflict of interest

JHM/MS/MT/PC/GD declare no conflict of interest. DD reports personal fees from Arthrex, Smith & Nephew, and Zimmer-Biomet outside the submitted work; has patents with royalties at Arthrex, BioMaterials (SBM) and Tornier-Corin. MPB reports personal fees from Symbios, Wright Medical, Integra and DePuy Synthesis outside the submitted work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 4737 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dejour, D.H., Müller, J.H., Saffarini, M. et al. Implant survival of 3rd-condyle and post-cam posterior-stabilised total knee arthroplasty are comparable at follow-up > 10 years: a systematic review. Knee Surg Sports Traumatol Arthrosc 30, 1001–1024 (2022). https://doi.org/10.1007/s00167-021-06507-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-021-06507-w

Keywords

Navigation