Skip to main content

Advertisement

Log in

Bone marrow aspirate concentrate and scaffold for osteochondral lesions of the talus in ankle osteoarthritis: satisfactory clinical outcome at 10 years

  • ANKLE
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

To evaluate at long-term follow-up patients undergoing a one-step procedure of debridement and BMAC seeded in situ onto a scaffold for the treatment of osteochondral lesions of the talus (OLT) in ankles affected by osteoarthritis (OA), documenting the duration of the clinical benefit and its efficacy in postponing end-stage procedures.

Methods

This series included 56 consecutive patients. Patients were evaluated preoperatively and up to a mean of 10 years of follow-up with the AOFAS score and the AOS scale, including pain and disability subscales. Furthermore, patients were asked to rate the satisfaction and failures were documented as well.

Results

The AOFAS score improved from 52.3 ± 14.3 to 73.5 ± 23.1 at 10 years (p  < 0.0005); the AOS pain and disability subscales decreased from 70.9 ± 14.1 to 37.2 ± 32.7 and from 69.0 ± 14.8 to 34.2 ± 29.3, respectively (both p < 0.0005). The overall rate of satisfaction was 61.8 ± 41.2 and 68.6% of patients would undergo again the surgical procedure. A total of 17 failures was documented, for a failure rate of 33.3%. Older patients and those with more complex cases requiring previous or combined surgeries had lower outcomes, as well as those affected by grade 3 OA, who experienced a high failure rate of 71.4%.

Conclusions

This one-step technique for the treatment of OLT in OA ankles showed to be safe and to provide a satisfactory outcome, even if patients with end stage OA presented a high revision rate at 10 years. Moreover, this procedure was effective over time, with overall good results maintained up to a long-term follow-up. However, older age, more complex cases requiring previous or combined surgeries, and advanced OA led to an overall worst outcome and a significantly higher failure rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andriolo L, Reale D, Di Martino A, Zaffagnini S, Vannini F, Ferruzzi A, Filardo G (2019) High rate of failure after matrix-assisted autologous chondrocyte transplantation in osteoarthritic knees at 15 years of follow-up. Am J Sports Med 47:2116–2122

    PubMed  Google Scholar 

  2. Boffa A, Previtali D, Di Laura FG, Vannini F, Candrian C, Filardo G (2020) Evidence on ankle injections for osteochondral lesions and osteoarthritis: a systematic review and meta-analysis. Int Orthop. https://doi.org/10.1007/s00264-020-04689-5

    Article  PubMed  Google Scholar 

  3. Bossert M, Boublil D, Parisaux JM, Bozgan AM, Richelme E, Conrozier T (2016) Imaging guidance improves the results of viscosupplementation with HANOX-M-XL in patients with ankle osteoarthritis: results of a clinical survey in 50 patients treated in daily practice. Clin Med Insights Arthritis Musculoskelet Disord 9:195–199

    PubMed  PubMed Central  Google Scholar 

  4. Buda R, Castagnini F, Cavallo M, Ramponi L, Vannini F, Giannini S (2016) “One-step” bone marrow-derived cells transplantation and joint debridement for osteochondral lesions of the talus in ankle osteoarthritis: clinical and radiological outcomes at 36 months. Arch Orthop Trauma Surg 136:107–116

    PubMed  Google Scholar 

  5. Buda R, Cavallo M, Castagnini F, Cenacchi A, Natali S, Vannini F, Giannini S (2015) Treatment of hemophilic ankle arthropathy with one-step arthroscopic bone marrow-derived cells transplantation. Cartilage 6:150–155

    PubMed  PubMed Central  Google Scholar 

  6. Canale ST, Belding RH (1980) Osteochondral lesions of the talus. J Bone Jt Surg Am 62:97–102

    CAS  Google Scholar 

  7. Cavallo C, Boffa A, Andriolo L, Silva S, Grigolo B, Zaffagnini S, Filardo G (2020) Bone marrow concentrate injections for the treatment of osteoarthritis: evidence from preclinical findings to the clinical application. Int Orthop. https://doi.org/10.1007/s00264-020-04703-w

    Article  PubMed  Google Scholar 

  8. Dawson J, Doll H, Coffey J, Jenkinson C (2007) Responsiveness and minimally important change for the Manchester-Oxford foot questionnaire (MOXFQ) compared with AOFAS and SF-36 assessments following surgery for hallux valgus. Osteoarthr Cartil 15:918–931

    CAS  Google Scholar 

  9. Domsic RT, Saltzman CL (1998) Ankle osteoarthritis scale. Foot ankle Int 19:466–471

    CAS  PubMed  Google Scholar 

  10. Filardo G, Andriolo L, Angele P, Berruto M, Brittberg M, Condello V, Chubinskaya S, de Girolamo L, Di Martino A, Di Matteo B, Gille J, Gobbi A, Lattermann C, Nakamura N, Nehrer S, Peretti GM, Shabshin N, Verdonk P, Zaslav K, Kon E (2020) Scaffolds for knee chondral and osteochondral defects: indications for different clinical scenarios. A consensus statement. Cartilage. https://doi.org/10.1177/1947603519894729

    Article  PubMed  PubMed Central  Google Scholar 

  11. Filardo G, Madry H, Jelic M, Roffi A, Cucchiarini M, Kon E (2013) Mesenchymal stem cells for the treatment of cartilage lesions: from preclinical findings to clinical application in orthopaedics. Knee Surg Sports Traumatol Arthrosc 21:1717–1729

    PubMed  Google Scholar 

  12. Filardo G, Vannini F, Marcacci M, Andriolo L, Ferruzzi A, Giannini S, Kon E (2013) Matrix-assisted autologous chondrocyte transplantation for cartilage regeneration in osteoarthritic knees: results and failures at midterm follow-up. Am J Sports Med 41:95–100

    PubMed  Google Scholar 

  13. Ganguly P, El-Jawhari JJ, Giannoudis PV, Burska AN, Ponchel F, Jones EA (2017) Age-related changes in bone marrow mesenchymal stromal cells: a potential impact on osteoporosis and osteoarthritis development. Cell Transplant 26:1520–1529

    PubMed  PubMed Central  Google Scholar 

  14. Giannini S, Buda R, Battaglia M, Cavallo M, Ruffilli A, Ramponi L, Pagliazzi G, Vannini F (2013) One-step repair in talar osteochondral lesions: 4-year clinical results and t2-mapping capability in outcome prediction. Am J Sports Med 41:511–518

    PubMed  Google Scholar 

  15. Giannini S, Buda R, Faldini C, Vannini F, Bevoni R, Grandi G, Grigolo B, Berti L (2005) Surgical treatment of osteochondral lesions of the talus in young active patients. J Bone Jt Surg Am 87(Suppl 2):28–41

    Google Scholar 

  16. Giannini S, Buda R, Vannini F, Cavallo M, Grigolo B (2009) One-step bone marrow-derived cell transplantation in talar osteochondral lesions. Clin Orthop Relat Res 467:3307–3320

    PubMed  PubMed Central  Google Scholar 

  17. Gomoll AH, Filardo G, de Girolamo L, Espregueira-Mendes J, Marcacci M, Rodkey WG, Steadman JR, Zaffagnini S, Kon E (2012) Surgical treatment for early osteoarthritis. Part I: cartilage repair procedures. Knee Surg Sports Traumatol Arthrosc 20:450–466

    CAS  PubMed  Google Scholar 

  18. Hannon CP, Ross KA, Murawski CD, Deyer TW, Smyth NA, Hogan MV, Do HT, O’Malley MJ, Kennedy JG (2016) Arthroscopic bone marrow stimulation and concentrated bone marrow aspirate for osteochondral lesions of the talus: a case-control study of functional and magnetic resonance observation of cartilage repair tissue outcomes. Arthrosc 32:339–347

    Google Scholar 

  19. Hassouna H, Kumar S, Bendall S (2007) Arthroscopic ankle debridement: 5-year survival analysis. Acta Orthop Belg 73:737–740

    PubMed  Google Scholar 

  20. Hauser RA, Orlofsky A (2013) Regenerative injection therapy with whole bone marrow aspirate for degenerative joint disease: a case series. Clin Med Insights Arthritis Musculoskelet Disord 6:65–72

    PubMed  PubMed Central  Google Scholar 

  21. Herrera-Perez M, Alrashidi Y, Galhoum AE, Kahn TL, Valderrabano V, Barg A (2019) Debridement and hinged motion distraction is superior to debridement alone in patients with ankle osteoarthritis: a prospective randomized controlled trial. Knee Surg Sports Traumatol Arthrosc 27:2802–2812

    PubMed  Google Scholar 

  22. Ishijima M, Nakamura T, Shimizu K, Hayashi K, Kikuchi H, Soen S, Omori G, Yamashita T, Uchio Y, Chiba J, Ideno Y, Kubota M, Kurosawa H, Kaneko K (2014) Intra-articular hyaluronic acid injection versus oral non-steroidal anti-inflammatory drug for the treatment of knee osteoarthritis: a multi-center, randomized, open-label, non-inferiority trial. Arthritis Res Ther 16:R18

    PubMed  PubMed Central  Google Scholar 

  23. Kennedy JG, Murawski CD (2011) The treatment of osteochondral lesions of the talus with autologous osteochondral transplantation and bone marrow aspirate concentrate: surgical technique. Cartilage 2:327–336

    PubMed  PubMed Central  Google Scholar 

  24. Kong L, Zheng L-Z, Qin L, Ho KKW (2017) Role of mesenchymal stem cells in osteoarthritis treatment. J Orthop Transl 9:89–103

    Google Scholar 

  25. Luyten FP, Denti M, Filardo G, Kon E, Engebretsen L (2012) Definition and classification of early osteoarthritis of the knee. Knee Surg Sports Traumatol Arthrosc 20:401–406

    PubMed  Google Scholar 

  26. Matta C, Szűcs-Somogyi C, Kon E, Robinson D, Neufeld T, Altschuler N, Berta A, Hangody L, Veréb Z, Zákány R (2019) Osteogenic differentiation of human bone marrow-derived mesenchymal stem cells is enhanced by an aragonite scaffold. Differentiation 107:24–34

    CAS  PubMed  Google Scholar 

  27. McGoldrick NP, Murphy EP, Kearns SR (2018) Osteochondral lesions of the ankle: the current evidence supporting scaffold-based techniques and biological adjuncts. Foot Ankle Surg 24:86–91

    CAS  PubMed  Google Scholar 

  28. Murphy EP, Curtin M, McGoldrick NP, Thong G, Kearns SR (2017) Prospective evaluation of intra-articular sodium hyaluronate injection in the ankle. J Foot Ankle Surg 56:327–331

    PubMed  Google Scholar 

  29. Nöth U, Steinert AF, Tuan RS (2008) Technology insight: adult mesenchymal stem cells for osteoarthritis therapy. Nat Clin Pract Rheumatol 4:371–380

    PubMed  Google Scholar 

  30. Paterson KL, Gates L (2019) Clinical assessment and management of foot and ankle osteoarthritis: a review of current evidence and focus on pharmacological treatment. Drugs Aging 36:203–211

    CAS  PubMed  Google Scholar 

  31. Pettine KA, Morrey BF (1987) Osteochondral fractures of the talus. A long-term follow-up. J Bone Jt Surg Br 69:89–92

    CAS  Google Scholar 

  32. Pierini M, Di Bella C, Dozza B, Frisoni T, Martella E, Bellotti C, Remondini D, Lucarelli E, Giannini S, Donati D (2013) The posterior iliac crest outperforms the anterior iliac crest when obtaining mesenchymal stem cells from bone marrow. J Bone Jt Surg Am 95:1101–1107

    Google Scholar 

  33. Rothrauff BB, Murawski CD, Angthong C, Becher C, Nehrer S, Niemeyer P, Sullivan M, Valderrabano V, Walther M, Ferkel RD (2018) Scaffold-based therapies: Proceedings of the international consensus meeting on cartilage repair of the ankle. Foot ankle Int 39:41–47

    Google Scholar 

  34. Scharstuhl A, Schewe B, Benz K, Gaissmaier C, Bühring H-J, Stoop R (2007) Chondrogenic potential of human adult mesenchymal stem cells is independent of age or osteoarthritis etiology. Stem Cells 25:3244–3251

    CAS  PubMed  Google Scholar 

  35. Schinhan M, Toegel S, Weinmann D, Schneider E, Chiari C, Gruber M, Nehrer S, Windhager R (2020) Biological regeneration of articular cartilage in an early stage of compartmentalized osteoarthritis: 12-month results. Am J Sports Med 48:1338–1346

    PubMed  Google Scholar 

  36. Schmal H, Salzmann GM, Langenmair ER, Henkelmann R, Südkamp NP, Niemeyer P (2014) Biochemical characterization of early osteoarthritis in the ankle. Sci World J 2014:434802

    Google Scholar 

  37. Tol JL, Verheyen CP, van Dijk CN (2001) Arthroscopic treatment of anterior impingement in the ankle. J Bone Jt Surg Br 83:9–13

    CAS  Google Scholar 

  38. Tschon M, Veronesi F, Giannini S, Fini M (2017) Fresh osteochondral allotransplants: Outcomes, failures and future developments. Inj Neth 48:1287–1295

    CAS  Google Scholar 

  39. Valderrabano V, Horisberger M, Russell I, Dougall H, Hintermann B (2009) Etiology of ankle osteoarthritis. Clin Orthop Relat Res 467:1800–1806

    PubMed  Google Scholar 

  40. Vannini F, Filardo G, Kon E, Roffi A, Marcacci M, Giannini S (2013) Scaffolds for cartilage repair of the ankle joint: the impact on surgical practice. Foot Ankle Surg 19:2–8

    PubMed  Google Scholar 

  41. Veronesi F, Giavaresi G, Tschon M, Borsari V, Nicoli Aldini N, Fini M (2013) Clinical use of bone marrow, bone marrow concentrate, and expanded bone marrow mesenchymal stem cells in cartilage disease. Stem Cells Dev 22:181–192

    CAS  PubMed  Google Scholar 

  42. Wakitani S, Imoto K, Yamamoto T, Saito M, Murata N, Yoneda M (2002) Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees. Osteoarthr Cartil 10:199–206

    CAS  Google Scholar 

  43. Weatherall JM, Mroczek K, McLaurin T, Ding B, Tejwani N (2013) Post-traumatic ankle arthritis. Bull Hosp Joint Dis 71:104–112

    Google Scholar 

  44. Wiewiorski M, Barg A (2013) Chondral and osteochondral reconstruction of local ankle degeneration. Foot Ankle Clin 18:543–554

    PubMed  Google Scholar 

  45. Witteveen AGH, Hofstad CJ, Kerkhoffs GMMJ (2015) Hyaluronic acid and other conservative treatment options for osteoarthritis of the ankle. Cochrane Database Syst Rev CD010643:1–42

    Google Scholar 

  46. Yasui Y, Wollstein A, Murawski CD, Kennedy JG (2017) Operative treatment for osteochondral lesions of the talus: biologics and scaffold-based therapy. Cartilage 8:42–49

    PubMed  Google Scholar 

  47. Zhang N, Wang Y, Xu W, Hu Y, Ding J (2016) Poly(lactide-co-glycolide)/hydroxyapatite porous scaffold with microchannels for bone regeneration. Polymers (Basel) 8(6):218

    Google Scholar 

Download references

Funding

The study was carried out at the Rizzoli Orthopaedic Institute—Bologna University (Bologna, Italy) in accordance with the World Medical Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sante Alessandro Altamura.

Ethics declarations

Conflict of interest

No potential conflict of interest.

Ethical approval

Declaration of Helsinki and was approved by our local Ethical Committee (Prot. Number 0001879).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vannini, F., Filardo, G., Altamura, S.A. et al. Bone marrow aspirate concentrate and scaffold for osteochondral lesions of the talus in ankle osteoarthritis: satisfactory clinical outcome at 10 years. Knee Surg Sports Traumatol Arthrosc 29, 2504–2510 (2021). https://doi.org/10.1007/s00167-021-06494-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-021-06494-y

Keywords

Navigation