Skip to main content
Log in

No differences in clinical outcomes and graft healing between anteromedial and central femoral tunnel placement after single bundle ACL reconstruction

  • KNEE
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

The purpose of this study was to compare clinical outcomes and graft healing after anterior cruciate ligament (ACL) reconstruction with anteromedial and central femoral tunnel placement.

Methods

During 2016 and 2018, 110 consecutive patients underwent single bundle ACL reconstruction; 85 patients met the inclusion criteria, and each patient underwent 3D-CT within 1 week and MRI 1.5 years after the operation. The central point of the femoral tunnel and signal/noise quotient (SNQ) of three regions of interest (ROI) in the intra-articular graft were measured to analyse the tunnel position and graft healing extent. Clinical assessments, including functional scores, KT-2000 arthrometer measurements and pivot-shift tests, were evaluated at the 2-year follow-up. Patients were divided into two groups depending on the femoral tunnel position: the anteromedial position group (Group A) and the centre position group (Group B).

Results

Seventy-one patients were available for the 2-year follow-up and MRI examination: 34 patients in Group A and 35 patients in Group B, and 2 patients were excluded for an eccentric tunnel position. No graft failure occurred, and compared with the preoperative assessment outcomes, the outcomes of both groups improved at the final follow-up. Group A was significantly better than Group B regarding the KT-2000 arthrometer measurements (P = 0.031). No significant differences were observed in terms of functional scores, pivot-shift test results, or the SNQ between groups.

Conclusions

No differences in clinical outcomes or graft healing were found between AM and central femoral tunnel placements in single bundle ACL reconstruction. Therefore, satisfactory clinical outcomes, knee stability and graft healing can be obtained for both femoral tunnel placements.

Level of evidence

II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aglietti P, Zaccherotti G, Fau-Menchetti PP, Menchetti PP, De Fau- Biase P, De Biase P (1995) A comparison of clinical and radiological parameters with two arthroscopic techniques for anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 3:2–8

    CAS  PubMed  Google Scholar 

  2. Ahn JH, Jeong HJ, Lee YS, Park JH, Lee JH, Ko TS (2016) Graft bending angle is correlated with femoral intraosseous graft signal intensity in anterior cruciate ligament reconstruction using the outside-in technique. Knee 23:666–673

    PubMed  Google Scholar 

  3. Ahn JH, Lee YS, Jeong HJ, Park JH, Cho Y, Kim KJ et al (2017) Comparison of transtibial and retrograde outside-in techniques of anterior cruciate ligament reconstruction in terms of graft nature and clinical outcomes: a case control study using 3T MRI. Arch Orthop Trauma Surg 137:357–365

    PubMed  Google Scholar 

  4. Alentorn-Geli E, Samitier G, Alvarez P, Steinbacher G, Cugat R (2010) Anteromedial portal versus transtibial drilling techniques in ACL reconstruction: a blinded cross-sectional study at two- to five-year follow-up. Int Orthop 34:747–754

    PubMed  PubMed Central  Google Scholar 

  5. Bernard M, Hertel P, Hornung H, Cierpinski T (1997) Femoral insertion of the ACL. Radiographic quadrant method. Am J Knee Surg 10:14–21

    CAS  PubMed  Google Scholar 

  6. Biercevicz AM, Akelman MR, Fadale PD, Hulstyn MJ, Shalvoy RM, Badger GJ et al (2015) MRI volume and signal intensity of ACL graft predict clinical, functional, and patient-oriented outcome measures after ACL reconstruction. Am J Sports Med 43:693–699

    PubMed  Google Scholar 

  7. Cavaignac E, Marot V, Faruch M, Reina N, Murgier J, Accadbled F et al (2018) Hamstring graft incorporation according to the length of the graft inside tunnels. Am J Sports Med 46:348–356

    PubMed  Google Scholar 

  8. Chen H, Tie K, Qi Y, Li B, Chen B, Chen L (2017) Anteromedial versus transtibial technique in single-bundle autologous hamstring ACL reconstruction: a meta-analysis of prospective randomized controlled trials. J Orthop Surg Res 12:167

    PubMed  PubMed Central  Google Scholar 

  9. Cheung P, Chan W-L, Yen C-H, Cheng S-C, Woo S-B, Wong T-K et al (2010) Femoral tunnel widening after quadrupled hamstring anterior cruciate ligament reconstruction. J Orthop Surg 18:198–202

    Google Scholar 

  10. Clatworthy M, Sauer S, Roberts T (2019) Transportal central femoral tunnel placement has a significantly higher revision rate than transtibial AM femoral tunnel placement in hamstring ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 27:124–129

    PubMed  Google Scholar 

  11. Colombet P, Graveleau N, Jambou S (2016) Incorporation of hamstring grafts within the tibial tunnel after anterior cruciate ligament reconstruction: magnetic resonance imaging of suspensory fixation versus interference screws. Am J Sports Med 44:2838–2845

    PubMed  Google Scholar 

  12. Cross MB, Musahl V, Bedi A, O'Loughlin P, Hammoud S, Suero E et al (2012) Anteromedial versus central single-bundle graft position: which anatomic graft position to choose? Knee Surg Sports Traumatol Arthrosc 20:1276–1281

    PubMed  Google Scholar 

  13. Figueroa D, Melean P, Calvo R, Vaisman A, Zilleruelo N, Figueroa F et al (2010) Magnetic resonance imaging evaluation of the integration and maturation of semitendinosus-gracilis graft in anterior cruciate ligament reconstruction using autologous platelet concentrate. Arthroscopy 26:1318–1325

    PubMed  Google Scholar 

  14. Gohil S, Annear PO, Breidahl W (2007) Anterior cruciate ligament reconstruction using autologous double hamstrings: a comparison of standard versus minimal debridement techniques using MRI to assess revascularisation. A randomised prospective study with a one-year follow-up. J Bone Joint Surg Br 89:1165–1171

    CAS  PubMed  Google Scholar 

  15. Hantes ME, Dailiana Z, Zachos VC, Varitimidis SE (2005) Anterior cruciate ligament reconstruction using the bio-transfix femoral fixation device and anteromedial portal technique. Knee Surg Sports Traumatol Arthrosc 14:497–501

    PubMed  Google Scholar 

  16. Hefti F, Muller W, Jakob RP, Staubli HU (1993) Evaluation of knee ligament injuries with the IKDC form. Knee Surg Sports Traumatol Arthrosc 1:226–234

    CAS  PubMed  Google Scholar 

  17. Hefzy MS, Fau-Noyes GE, Noyes FR (1989) Factors affecting the region of most isometric femoral attachments. Part II: the anterior cruciate ligament. Am J Sports Med 17:208–216

    CAS  PubMed  Google Scholar 

  18. Howell SM, Clark JA, Blasier RD (1991) Serial magnetic resonance imaging of hamstring anterior cruciate ligament autografts during the first year of implantation: a preliminary study. Am J Sports Med 19:42–47

    CAS  PubMed  Google Scholar 

  19. Iriuchishima T, Tajima G, Ingham SJ, Shen W, Horaguchi T, Saito A et al (2009) Intercondylar roof impingement pressure after anterior cruciate ligament reconstruction in a porcine model. Knee Surg Sports Traumatol Arthrosc 17:590–594

    PubMed  Google Scholar 

  20. Jorge PB, Escudeiro D, Severino NR, Santili C, de Leite Cury RP, Junior AD et al (2018) Positioning of the femoral tunnel in anterior cruciate ligament reconstruction: functional anatomical reconstruction. BMJ Open Sport Exerc Med 4:e000420

    PubMed  PubMed Central  Google Scholar 

  21. Kawaguchi Y, Kondo E, Takeda R, Akita K, Yasuda K, Amis AA (2015) The role of fibers in the femoral attachment of the anterior cruciate ligament in resisting tibial displacement. Arthroscopy 31:435–444

    PubMed  PubMed Central  Google Scholar 

  22. Kopf S, Musahl V, Tashman S, Szczodry M, Shen W, Fu FH (2009) A systematic review of the femoral origin and tibial insertion morphology of the ACL. Knee Surg Sports Traumatol Arthrosc 17:213–219

    PubMed  Google Scholar 

  23. Kraeutler MJ, Wolsky RM, Vidal AF, Bravman JT (2017) Anatomy and biomechanics of the native and reconstructed anterior cruciate ligament: surgical implications. J Bone Joint Surg Am 99:438–445

    PubMed  Google Scholar 

  24. Lee SM, Yoon KH, Lee SH, Hur D (2017) The relationship between acl femoral tunnel position and postoperative MRI signal intensity. J Bone Joint Surg Am 99:379–387

    PubMed  Google Scholar 

  25. Li H, Chen S, Tao H, Li H, Chen S (2014) Correlation analysis of potential factors influencing graft maturity after anterior cruciate ligament reconstruction. Orthop J Sports Med 2:2325967114553552

    PubMed  PubMed Central  Google Scholar 

  26. Lubowitz JH (2014) Anatomic ACL reconstruction produces greater graft length change during knee range-of-motion than transtibial technique. Knee Surg Sports Traumatol Arthrosc 22:1190–1195

    PubMed  Google Scholar 

  27. Lysholm J, Gillquist J (1982) Evaluation of knee ligament surgery results with special emphasis on use of a scoring scale. Am J Sports Med 10:150–154

    CAS  PubMed  Google Scholar 

  28. Ma Y, Murawski CD, Rahnemai-Azar AA, Maldjian C, Lynch AD, Fu FH (2015) Graft maturity of the reconstructed anterior cruciate ligament 6 months postoperatively: a magnetic resonance imaging evaluation of quadriceps tendon with bone block and hamstring tendon autografts. Knee Surg Sports Traumatol Arthrosc 23:661–668

    PubMed  Google Scholar 

  29. Meredick RB, Vance KJ, Appleby D, Lubowitz JH (2008) Outcome of single-bundle versus double-bundle reconstruction of the anterior cruciate ligament: a meta-analysis. Am J Sports Med 36:1414–1421

    PubMed  Google Scholar 

  30. Musahl V, Plakseychuk A, VanScyoc A, Sasaki T, Debski RE, McMahon PJ et al (2005) Varying femoral tunnels between the anatomical footprint and isometric positions: effect on kinematics of the anterior cruciate ligament-reconstructed knee. Am J Sports Med 33:712–718

    PubMed  Google Scholar 

  31. Nawabi DH, Tucker S, Schafer KA, Zuiderbaan HA, Nguyen JT, Wickiewicz TL et al (2016) ACL fibers near the lateral intercondylar ridge are the most load bearing during stability examinations and isometric through passive flexion. Am J Sports Med 44:2563–2571

    PubMed  Google Scholar 

  32. Outerbridge RE (1961) The etiology of chondromalacia patellae. J Bone Joint Surg Br 43-b:752–757

    CAS  PubMed  Google Scholar 

  33. Pearle AD, McAllister D, Howell SM (2015) Rationale for strategic graft placement in anterior cruciate ligament reconstruction: I.D.E.A.L. Femoral Tunnel Position Am J Orthop (Belle Mead NJ) 44:253–258

    Google Scholar 

  34. Pearle AD, Shannon FJ, Granchi C, Wickiewicz TL, Warren RF (2008) Comparison of 3-dimensional obliquity and anisometric characteristics of anterior cruciate ligament graft positions using surgical navigation. Am J Sports Med 36:1534–1541

    PubMed  Google Scholar 

  35. Seo SS, Kim CW, Lee CR, Kwon YU, Kim MW, Kim OG et al (2019) Effect of femoral tunnel position on stability and clinical outcomes after single-bundle anterior cruciate ligament reconstruction using the outside-in technique. Arthroscopy 35:1648–1655

    PubMed  Google Scholar 

  36. Sim JA, Kim JM, Lee S, Song EK, Seon JK (2018) No difference in graft healing or clinical outcome between trans-portal and outside-in techniques after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 26:2338–2344

    PubMed  Google Scholar 

  37. Tanaka Y, Yonetani Y, Shiozaki Y, Kanamoto T, Kita K, Amano H et al (2014) MRI analysis of single-, double-, and triple-bundle anterior cruciate ligament grafts. Knee Surg Sports Traumatol Arthrosc 22:1541–1548

    PubMed  Google Scholar 

  38. Tegner Y, Lysholm J (1985) Rating systems in the evaluation of knee ligament injuries. Clin Orthop Relat Res 198:43–49

    Google Scholar 

  39. van der List JP, Zuiderbaan HA, Nawabi DH, Pearle AD (2017) Impingement following anterior cruciate ligament reconstruction: comparing the direct versus indirect femoral tunnel position. Knee Surg Sports Traumatol Arthrosc 25:1617–1624

    PubMed  Google Scholar 

  40. Voos JE, Musahl V, Maak TG, Wickiewicz TL, Pearle AD (2010) Comparison of tunnel positions in single-bundle anterior cruciate ligament reconstructions using computer navigation. Knee Surg Sports Traumatol Arthrosc 18:1282–1289

    PubMed  Google Scholar 

  41. Weiler A, Peters G, Maurer J, Unterhauser FN, Sudkamp NP (2001) Biomechanical properties and vascularity of an anterior cruciate ligament graft can be predicted by contrast-enhanced magnetic resonance imaging. A two-year study in sheep. Am J Sports Med 29:751–761

    CAS  PubMed  Google Scholar 

  42. Yagi M, Wong EK, Kanamori A, Debski RE, Fu FH, Woo SLY (2002) Biomechanical analysis of an anatomic anterior cruciate ligament reconstruction. Am J Sports Med 30:660–666

    PubMed  Google Scholar 

  43. Zavras TD, Race A, Bull AM, Amis AA (2001) A comparative study of ‘isometric’ points for anterior cruciate ligament graft attachment. Knee Surg Sports Traumatol Arthrosc 9:28–33

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from the Beijing Municipal Science and Technology Commission No. Z171100001017085, Major Clinic Project of Peking University Third Hospital No. BYSY2018005 and Capital Characteristic Clinic Project No. Z161100000516034.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingfang Ao.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest.

Ethical approval

This study's design was reviewed and approved by medical science research ethics committee of Peking University Third Hospital, ethics approval number was IRB00006761-2016139.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Ma, Y., Pang, C. et al. No differences in clinical outcomes and graft healing between anteromedial and central femoral tunnel placement after single bundle ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 29, 1734–1741 (2021). https://doi.org/10.1007/s00167-020-06206-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-020-06206-y

Navigation