Skip to main content
Log in

High reported rate of return to play following bone marrow stimulation for osteochondral lesions of the talus

  • Ankle
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

The purpose of this study is to systematically review the literature and to evaluate the reported rehabilitation protocols, return to play guidelines and subsequent rates and timing of return to play following bone marrow stimulation (BMS) for osteochondral lesions of the talus (OLT).

Methods

MEDLINE, EMBASE and the Cochrane Library were searched according to the PRISMA guidelines in September 2017. The rate and timing of return to play was assessed. The rehabilitation protocols were recorded, including time to start range of motion, partial weight-bearing and complete weight-bearing.

Results

Fifty-seven studies with 3072 ankles were included, with a mean age of 36.9 years (range 23–56.8 years), and a mean follow-up of 46.0 months (range 1.5–141 months). The mean rate of return to play was 86.8% (range 60–100%), and the mean time to return to play was 4.5 months (range 3.5–5.9 months). There was large variability in the reported rehabilitation protocols. Range of motion exercises were most often allowed to begin in the first week (46.2%), and second week postoperatively (23.1%). The most commonly reported time to start partial weight-bearing was the first week (38.8%), and the most frequently reported time of commencing full weight-bearing was 6 weeks (28.8%). Surgeons most often allowed return to play at 4 months (37.5%).

Conclusions

There is a high rate of return following BMS for OLT with 86.8% and the mean time to return to play was 4.5 months. There is also a significant deficiency in reported rehabilitation protocols, and poor quality reporting in return to play criteria. Early weightbearing and early postoperative range of motion exercises appear to be advantageous in accelerated return to sports.

Level of Evidence

Level IV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. American Academy of Orthopaedic Surgeons Board of Directors (2017) Patient return to play checklist. Available at: http://www.aaos.org/uploadedFiles/PreProduction/Quality/AUCs_and_Performance_Measures/appropriate_use/AAOS%20ACL%20Return%20to%20Play%20Checklist.pdf. Accessed 25 Sept 2017

  2. Angthong C, Yoshimura I, Kanazawa K, Takeyama A, Hagio T, Ida T, Naito M (2013) Critical three-dimensional factors affecting outcome in osteochondral lesion of the talus. Knee Surg Sports Traumatol Arthrosc 21:1418–1426

    Article  PubMed  Google Scholar 

  3. Becher C, Thermann H (2005) Results of microfracture in the treatment of articular cartilage fefects of the talus. Foot Ankle Int 26:583–589

    Article  PubMed  Google Scholar 

  4. Becher C, Driessen A, Hess T, Longo UM, Maffulli N, Thermann H (2010) Microfracture for chondral defects of the talus: maintenance of early results at midterm follow-up. Knee Surg Sports Traumatol Arthrosc 18:656–663

    Article  PubMed  Google Scholar 

  5. Becher C, Zuhlke D, Plaas C, Ewig M, Calliess T, Stukenborg-Colsman C, Thermann H (2015) T2-mapping at 3 T after microfracture in the treatment of osteochondral defects of the talus at an average follow-up of 8 years. Knee Surg Sports Traumatol Arthrosc 23:2406–2412

    Article  PubMed  Google Scholar 

  6. Bizzini M, Hancock D, Impellizzeri F (2012) Suggestions from the field for return to sports participation following anterior cruciate ligament reconstruction: soccer. J Orthop Sports Phys Ther 42:304–312

    Article  PubMed  Google Scholar 

  7. Bonnin M, Bouysset M (1999) Arthroscopy of the ankle: analysis of results and indications on a series of 75 cases. Foot Ankle Int 20:744–751

    Article  CAS  PubMed  Google Scholar 

  8. Choi WJ, Kim BS, Lee JW (2012) Osteochondral lesion of the talus: could age be an indication for arthroscopic treatment? Am J Sports Med 40:419–424

    Article  PubMed  Google Scholar 

  9. Choi GW, Choi WJ, Youn HK, Park YJ, Lee JW (2013) Osteochondral lesions of the talus: are there any differences between osteochondral and chondral types? Am J Sports Med 41:504–510

    Article  PubMed  Google Scholar 

  10. Choi JI, Lee KB (2016) Comparison of clinical outcomes between arthroscopic subchondral drilling and microfracture for osteochondral lesions of the talus. Knee Surg Sports Traumatol Arthrosc 24:2140–2147

    Article  PubMed  Google Scholar 

  11. Chuckpaiwong B, Berkson EM, Theodore GH (2008) Microfracture for osteochondral lesions of the ankle: outcome analysis and outcome predictors of 105 cases. Arthroscopy 24:106–112

    Article  PubMed  Google Scholar 

  12. Clanton TO, Johnson NS, Matheny LM (2014) Outcomes following microfracture in grade 3 and 4 articular cartilage lesions of the ankle. Foot Ankle Int 35:764–770

    Article  PubMed  Google Scholar 

  13. Coleman BD, Khan KM, Maffulli N, Cook JL, Wark JD (2000) Studies of surgical outcome after patellar tendinopathy: clinical significance of methodological deficiencies and guidelines for future studies. Victorian Institute of Sport Tendon Study Group. Scand J Med Sci Sports 10:2–11

    Article  CAS  PubMed  Google Scholar 

  14. Cuttica DJ, Shockley JA, Hyer CF, Berlet GC (2011) Correlation of MRI edema and clinical outcomes following microfracture of osteochondral lesions of the talus. Foot Ankle Spec 4:274–279

    Article  PubMed  Google Scholar 

  15. Cuttica DJ, Smith WB, Hyer CF, Philbin TM, Berlet GC (2011) Osteochondral lesions of the talus: predictors of clinical outcome. Foot Ankle Int 32:1045–1051

    Article  PubMed  Google Scholar 

  16. De Araujo MK, de Cillo MS, Bittar CK, Zabeu JL, Cezar CN (2016) Arthroscopic treatment of osteochondral lesions of the talus. Acta Ortho Bras 24:32–34

    Article  Google Scholar 

  17. Domayer SE, Welsch GH, Stelzeneder D, Hirschfeld C, Quirbach S, Nehrer S, Dorotka R, Mamisch TC, Trattnig S (2011) Microfracture in the ankle: clinical results and MRI with T2-mapping at 3.0T after 1 to 8 Years. Cartilage 2:73–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Doral MN, Bilge O, Batmaz G, Donmez G, Turhan E, Demirel M, Atay OA, Uzumcugil A, Atesok K, Kaya D (2012) Treatment of osteochondral lesions of the talus with microfracture technique and postoperative hyaluronan injection. Knee Surg Sports Traumatol Arthrosc 20:1398–1403

    Article  CAS  PubMed  Google Scholar 

  19. El Sallakh S (2012) Arthroscopic debridement and microfracture for osteochondral lesions of the talus. Curr Orthop Pract 23:116–121

    Article  Google Scholar 

  20. Ferkel RD, Zanotti RM, Komenda GA, Sgaglione NA, Cheng MS, Applegate GR, Dopirak RM (2008) Arthroscopic treatment of chronic osteochondral lesions of the talus: long-term results. Am J Sports Med 36:1750–1762

    Article  PubMed  Google Scholar 

  21. Giannini S, Vannini F (2004) Operative treatment of osteochondral lesions of the talar dome: current concepts review. Foot Ankle Int 25:168–175

    Google Scholar 

  22. Gobbi A, Francisco RA, Lubowitz JH, Allegra F, Canata G (2006) Osteochondral lesions of the talus: randomized controlled trial comparing chondroplasty, microfracture, and osteochondral autograft transplantation. Arthroscopy 22:1085–1092

    Article  PubMed  Google Scholar 

  23. Goh GS, Bin Abd Razak HR, Mitra AK (2015) Outcomes are favorable after arthroscopic treatment of osteochondritis dissecans of the talus. J Foot Ankle Surg 54:57–60

    Article  PubMed  Google Scholar 

  24. Gormeli G, Karakaplan M, Gormeli CA, Sarikaya B, Elmali N, Ersoy Y (2015) Clinical effects of platelet-rich plasma and hyaluronic acid as an additional therapy for talar osteochondral lesions treated with microfracture surgery: a prospective randomized clinical trial. Foot Ankle Int 36:891–900

    Article  PubMed  Google Scholar 

  25. Guney A, Akar M, Karaman I, Oner M, Guney B (2015) Clinical outcomes of platelet rich plasma (PRP) as an adjunct to microfracture surgery in osteochondral lesions of the talus. Knee Surg Sports Traumatol Arthrosc 23:2384–2389

    Article  PubMed  Google Scholar 

  26. Guney A, Yurdakul E, Karaman I, Bilal O, Kafadar IH, Oner M (2016) Medium-term outcomes of mosaicplasty versus arthroscopic microfracture with or without platelet-rich plasma in the treatment of osteochondral lesions of the talus. Knee Surg Sports Traumatol Arthrosc 24:1293–1298

    Article  PubMed  Google Scholar 

  27. Guo QW, Hu YL, Jiao C, Yu CL, Ao YF (2010) Arthroscopic treatment for osteochondral lesions of the talus: analysis of outcome predictors. Chin Med J (Engl) 123:296–300

    Google Scholar 

  28. Han SH, Lee JW, Lee DY, Kang ES (2006) Radiographic changes and clinical results of osteochondral defects of the talus with and without subchondral cysts. Foot Ankle Int 27:1109–1114

    Article  PubMed  Google Scholar 

  29. Hannon CP, Ross KA, Murawski CD, Deyer TW, Smyth NA, Hogan MV, Do HT, O’Malley MJ, Kennedy JG (2016) Arthroscopic bone marrow stimulation and concentrated bone marrow aspirate for osteochondral lesions of the talus: a case-control study of functional and magnetic resonance observation of cartilage repair tissue outcomes. Arthroscopy 32:339–347

    Article  PubMed  Google Scholar 

  30. Hintermann B, Boss A, Schäfer D (2002) Arthroscopic findings in patients with chronic ankle instability. Am J Sports Med 30:402–409

    Article  PubMed  Google Scholar 

  31. Hintermann B, Regazzoni P, Lampert C, Stutz G, Gächter A (2000) Arthroscopic findings in acute fractures of the ankle. J Bone Joint Surg Br 82:345–351

    Article  CAS  PubMed  Google Scholar 

  32. Jung HG, Carag JAV, Park JY, Kim TH, Moon SG (2011) Role of arthroscopic microfracture for cystic type osteochondral lesions of the talus with radiographic enhanced MRI support. Knee Surg Sports Traumatol Arthrosc 19:858–862

    Article  PubMed  Google Scholar 

  33. Jung HG, Kim NR, Jeon JY, Lee DO, Eom JS, Lee JS, Kim SW. (2017) CT arthrography visualizes tissue growth of osteochondral defects of the talus after microfracture. Knee Surg Sports Traumatol Arthrosc

  34. Kelberine F, Frank A (1999) Arthroscopic treatment of osteochondral lesions of the talar dome: a retrospective study of 48 cases. Arthroscopy 15:77–84

    Article  CAS  PubMed  Google Scholar 

  35. Kim YS, Lee JH, Choi YJ, Kim YC, Koh YG (2014) Does an injection of a stromal vascular fraction containing adipose-derived mesenchymal stem cells influence the outcomes of marrow stimulation in osteochondral lesions of the talus? Am J Sports Med 42:2424–2434

    Article  PubMed  Google Scholar 

  36. Kim YS, Park EH, Kim YC, Koh YG (2013) Clinical outcomes of mesenchymal stem cell injection with arthroscopic treatment in older patients with osteochondral lesions of the talus. Am J Sports Med 41:1090–1099

    Article  PubMed  Google Scholar 

  37. Kumai T, Takakura Y, Higashiyama I, Tamai S (1999) Arthroscopic drilling for the treatment of osteochondral lesions of the talus. J Bone Joint Surg Am 81:1229–1235

    Article  CAS  PubMed  Google Scholar 

  38. Kuni B, Schmitt H, Chloridis D, Ludwig K (2012) Clinical and MRI results after microfracture of osteochondral lesions of the talus. Arch Orthop Trauma Surg 132:1765–1771

    Article  CAS  PubMed  Google Scholar 

  39. Lee KB, Bai LB, Chung JY, Seon JK (2010) Arthroscopic microfracture for osteochondral lesions of the talus. Knee Surg Sports Traumatol Arthrosc 18:247–253

    Article  PubMed  Google Scholar 

  40. Lee KB, Bai LB, Yoon TR, Jung ST, Seon JK (2009) Second-look arthroscopic findings and clinical outcomes after microfracture for osteochondral lesions of the talus. Am J Sports Med 37:63S-70S

    PubMed  Google Scholar 

  41. Lee KB, Bai LB, Yoon TR, Jung ST, Seon JK, Kim NY, Sung IH (2012) Comparison of early versus delayed weightbearing outcomes after microfracture for small to midsized osteochondral lesions of the talus. Am J Sports Med 40:2023–2028

    Article  PubMed  Google Scholar 

  42. Lee M, Kwon JW, Choi WJ, Lee JW (2015) Comparison of outcomes for osteochondral lesions of the talus with and without chronic lateral ankle instability. Foot Ankle Int 36:1050–1057

    Article  PubMed  Google Scholar 

  43. Lee KB, Park HW, Cho HJ, Seon JK (2015) Comparison of arthroscopic microfracture for osteochondral lesions of the talus with and without subchondral cyst. Am J Sports Med 43:1951–1956

    Article  PubMed  Google Scholar 

  44. Lee S, Sakurai T, Ohsako M, Sauro R, Hatta H, Atomi Y (2010) Tissue stiffness induced by prolonged immobilization of the rat knee joint and relevance of AGEs (pentosidine). Connect Tissue Res 51:467–477

    Article  CAS  PubMed  Google Scholar 

  45. Li S, Li H, Liu Y, Qu F, Wang J, Liu C (2014) Clinical outcomes of early weight-bearing after arthroscopic microfracture during the treatment of osteochondral lesions of the talus. Chin Med J 127:2470–2474

    PubMed  Google Scholar 

  46. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, Moher D (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med 6:e1000100

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lundeen GA, Dunaway LJ (2017) Immediate unrestricted postoperative weightbearing and mobilization after bone marrow stimulation of large osteochondral lesions of the talus. Cartilage 8:73–79

    Article  PubMed  Google Scholar 

  48. Masahiko T, Damle S, Penmatsa M, West P, Yang X, Bostrom M, Hidaka C, Yamauchi M, Pleshko N (2012) Temporal changes in collagen cross-links in spontaneous articular cartilage repair. Cartilage 3:278–287

    Article  PubMed  Google Scholar 

  49. Mei-Dan O, Carmont MR, Laver L, Mann G, Maffulli N, Nyska M (2012) Platelet-rich plasma or hyaluronate in the management of osteochondral lesions of the talus. Am J Sports Med 40:534–541

    Article  PubMed  Google Scholar 

  50. Ming SH, Jin DTK, Kanta MA (2004) Arthroscopic treatment of osteochondritis dissecans of the talus. Foot Ankle Surg 10:181–186

    Article  Google Scholar 

  51. Murawski CD, Foo LF, Kennedy JG (2010) A review of arthroscopic bone marrow stimulation techniques of the talus: the good, the bad, and the causes for concern. Cartilage 1:137–144

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ogilvie-Harris DJ, Sarrosa EA (1999) Arthroscopic treatment of osteochondritis dissecans of the talus. Arthroscopy 15:805–808

    Article  CAS  PubMed  Google Scholar 

  53. Park HW, Lee KB (2015) Comparison of chondral versus osteochondral lesions of the talus after arthroscopic microfracture. Knee Surg Sports Traumatol Arthrosc 23:860–867

    Article  PubMed  Google Scholar 

  54. Pinski JM, Boakye LA, Murawski CD, Hannon CP, Ross KA, Kennedy JG (2016) Low level of evidence and methodologic quality of clinical outcome studies on cartilage repair of the ankle. Arthroscopy 32:214–222

    Article  PubMed  Google Scholar 

  55. Polat G, Ersen A, Erdil ME, Kizilkurt T, Kilicoglu O, Asik M (2016) Long-term results of microfracture in the treatment of talus osteochondral lesions. Knee Surg Sports Traumatol Arthrosc 24:1299–1303

    Article  PubMed  Google Scholar 

  56. Polat G, Karademir G, Akalan E, Mehmet A, Erdil M (2007) Patient compliance with touchdown weight bearing after microfracture treatment of talar osteochondral lesions. J Orthop Surg Res 20:46

    Google Scholar 

  57. Potter HG, Chong leR (2009) Magnetic resonance imaging assessment of chondral lesions and repair. J Bone Joint Surg Am 91:126–131

    Article  PubMed  Google Scholar 

  58. Ramponi L, Yasui Y, Murawski CD, Ferkel RD, DiGiovanni CW, Kerkhoffs GMMJ., Calder JDF, Takao M, Vannini F, Choi WJ, Lee JW, Stone J, Kennedy JG (2017) Lesion size is a predictor of clinical outcomes after bone marrow stimulation for osteochondral lesions of the talus: A systematic review. Am J Sports Med 45:1698–1705

    Article  PubMed  Google Scholar 

  59. Reilingh ML, Lambers KTA, Dahmen J, Opdam KTM, Kerkhoffs GMMJ. (2017) The subchondral bone healing after fixation of an osteochondral talar defect is superior in comparison with microfracture. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-017-4654-z

    Article  PubMed  PubMed Central  Google Scholar 

  60. Reilingh ML, van Bergen CJA, Gerards RM, van Eekeren IC, de Haan RJ, Sierevert IN, Kerkhoffs GMMJ., Krips R, Meuffels DE, van Dijk CN, Blankevoort L (2016) Effects of pulsed electromagnetic fields on return to sports after arthroscopic debridement and microfracture of osteochondral talar aefects a randomized, double-blind, placebo-controlled, multicenter trial. Am J Sports Med 44:1292–1300

    Article  PubMed  Google Scholar 

  61. Salter RB, Simmonds DF, Malcolm BW, Rumble EJ, MacMichael D, Clements ND (1980) The biological effect of continuous passive motion on the healing of full-thickness defects in articular cartilage: an experimental investigation in the rabbit. J Bone Joint Surg Am 62:1232–1251

    Article  CAS  PubMed  Google Scholar 

  62. Saxena A, Eakin C (2007) Articular talar injuries in athletes: results of micro- fracture and autogenous bone graft. Am J Sports Med 35:1680–1687

    Article  PubMed  Google Scholar 

  63. Schuman L, Struijs PAA, van Dijk CN (2003) Arthroscopic treatment for osteochondral defects of the talus. Results at follow-up at 2 to 11 years. J Bone Joint Surg Br 84:364–368

    Article  Google Scholar 

  64. Seijas R, Alvarez P, Ares O, Steinbacher G, Cusco ́ X, Cugat R (2010) Osteocartilaginous lesions of the talus in soccer players. Arch Orthop Trauma Surg 130:329–333

    Article  PubMed  Google Scholar 

  65. Seow D, Yasui Y, Hutchinson ID, Hurley ET, Shimozono Y, Kennedy JG (2017) The subchondral bone is affected by bone marrow stimulation: a systematic review of preclinical animal studies. Cartilage. https://doi.org/10.1177/1947603517711220

    Article  PubMed  PubMed Central  Google Scholar 

  66. Shang XL, Tao HY, Chen Li SY, Li YX, Hua YH (2016) Clinical and MRI outcomes of HA injection following arthroscopic microfracture for osteochondral lesions of the talus. Knee Surg Sports Traumatol Arthrosc 24:1243–1249

    Article  PubMed  Google Scholar 

  67. Tao H, Shang X, Lu R, Li R, Hua Y, Feng X, Chen S (2014) Quantitative magnetic resonance imaging (MRI) evaluation of cartilage repair after microfracture (MF) treatment for adult unstable osteochondritis dissecans (OCD) in the ankle: correlations with clinical outcome. Eur Radiol 24:1758–1767

    Article  PubMed  Google Scholar 

  68. Van Bergen CJA, Kox LS, Maas M, Sierevelt IN, Kerkhoffs GMMJ., van Dijk CN (2016) Arthroscopic treatment of osteochondral defects of the talus. Outcomes at eight to twenty years. J Bone Joint Surg Am 95:519–525

    Article  Google Scholar 

  69. Van Eekeren ICM, van Bergen CJA, Sierevelt IN, Reilingh ML, van Dijk CN (2016) Return to sports after arthroscopic debridement and bone marrow stimulation of osteochondral talar defects: a 5- to 24-year follow-up study. Knee Surg Sports Traumatol Arthrosc 24:1311–1315

    Article  PubMed  PubMed Central  Google Scholar 

  70. Ventura A, Terzaghi C, Legnani C, Borgo E (2013) Treatment of post-traumatic osteochondral lesions of the talus: a four-step approach. Knee Surg Sports Traumatol Arthrosc 21:1245–1250

    Article  PubMed  Google Scholar 

  71. Williams JM, Moran M, Thonar EJ, Salter RB (1994) Continuous passive motion stimulates repair of rabbit knee articular cartilage after matrix proteoglycan loss. Clin Orthop Relat Res 304:252–262

    Google Scholar 

  72. Yoshimura I, Kanazawa K, Hagio T, Minokawa S, Asano K, Naito M (2015) The relationship between the lesion-to- ankle articular length ratio and clinical outcomes after bone marrow stimulation for small osteochondral lesions of the talus. J Orthop Sci 20:507–512

    Article  PubMed  Google Scholar 

  73. Yoshimura I, Kanazawa K, Takeyama A, Angthong C, Ida T, Hagio T, Hanada H, Naito M (2013) Arthroscopic bone marrow stimulation techniques for osteochondral lesions of the talus. Prognostic factors for small lesions. Am J Sports Med 41:528–534

    Article  PubMed  Google Scholar 

  74. Zaman S, White A, Shi WJ, Freedman KB, Dodson CC (2017) Return-to-play guidelines after medial patellofemoral ligament surgery for recurrent patellar instability. A systematic review. Am J Sports Med. https://doi.org/10.1177/0363546517713663

    Article  PubMed  Google Scholar 

  75. Zengerink M, Struijs PA, Tol JL, van Dijk CN (2010) Treatment of osteochondral lesions of the talus: a systematic review. Knee Surg Sports Traumatol Arthrosc 18:238–246

    Article  PubMed  Google Scholar 

Download references

Funding

No funding has been received for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John G. Kennedy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This manuscript is a systematic review and does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 30 KB)

Supplementary material 2 (DOCX 19 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hurley, E.T., Shimozono, Y., McGoldrick, N.P. et al. High reported rate of return to play following bone marrow stimulation for osteochondral lesions of the talus. Knee Surg Sports Traumatol Arthrosc 27, 2721–2730 (2019). https://doi.org/10.1007/s00167-018-4913-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-018-4913-7

Keywords

Navigation