Skip to main content
Log in

Can we predict the size of frequently used autografts in ACL reconstruction?

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

This study presents a method to measure the size of quadriceps, patellar tendon and hamstring autografts using preoperative magnetic resonance imaging (MRI).

Methods

Sixty-two subjects with a mean age of 25 ± 10 years who underwent ACL surgery between 2011 and 2014 were included. Patient anthropometric data were recorded for all subjects. During surgery, the respective autograft was harvested and measured using commercially available graft sizers. MRI measurements were performed by two raters, who were blinded to the intra-operative measurements.

Results

The inter- and intra-rater reliability was ≥0.8 for all MRI measurements. The intra-class correlation coefficient between the MRI measurement of the graft and the actual size of the harvested graft was 0.639. There were significant correlations between quadriceps tendon thickness and height (r = 0.3, p < 0.03), weight (r = 0.3, p < 0.01), BMI (r = 0.3, p < 0.04) and gender (r = −0.4, p < 0.002) and patellar tendon thickness and height (r = 0.4, p < 0.01), weight (r = 0.3, p < 0.01) and gender (r = −0.4, p < 0.012).

Conclusion

Preoperative MRI measurements of quadriceps, patellar tendon and hamstring graft size are highly reliable with moderate-to-good accuracy. Significant correlations between patient anthropometric data and the thicknesses of the quadriceps and patellar tendons were observed. Obtaining this information can be useful for preoperative planning and to help counsel patients on appropriate graft choices prior to surgery.

Level of evidence

III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Andernord D, Björnsson H, Petzold M et al (2014) Surgical predictors of early revision surgery after anterior cruciate ligament reconstruction: results from the Swedish national knee ligament register on 13,102 patients. Am J Sports Med 42(7):1574–1582

    Article  PubMed  Google Scholar 

  2. Araujo PH, Kfuri Junior M, Ohashi B, Hoshino Y, Zaffagnini S, Samuelsson K, Karlsson J, Fu F, Musahl V (2014) Individualized ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 22(9):1966–1975

    Article  PubMed  Google Scholar 

  3. Bickel BA, Fowler TT, Mowbray JG, Adler B, Klingele K, Phillips G (2008) Preoperative magnetic resonance imaging cross-sectional area for the measurement of hamstring autograft diameter for reconstruction of the adolescent anterior cruciate ligament. Arthroscopy 24(12):1336–1341

    Article  PubMed  Google Scholar 

  4. Boisvert CB, Aubin ME, DeAngelis N (2011) Relationship between anthropometric measurements and hamstring autograft diameter in anterior cruciate ligament reconstruction. Am J Orthop 40(6):293–295

    PubMed  Google Scholar 

  5. Borchers JR, Pedroza A, Kaeding C (2009) Activity level and graft type as risk factors for anterior cruciate ligament graft failure: a case-control study. Am J Sports Med 37(12):2362–2367

    Article  PubMed  Google Scholar 

  6. Bradley JP, Klimkiewicz JJ, Rytel MJ, Powell JW (2002) Anterior cruciate ligament injuries in the National Football League: epidemiology and current treatment trends among team physicians. Arthroscopy 18(5):502–509

    Article  PubMed  Google Scholar 

  7. Chiang E-R, Ma H-L, Wang S-T, Hung S-C, Liu C-L, Chen T-H (2012) Hamstring graft sizes differ between Chinese and Caucasians. Knee Surg Sports Traumatol Arthrosc 20(5):916–921

    Article  PubMed  Google Scholar 

  8. Conte EJ, Hyatt AE, Gatt CJ, Dhawan A (2014) Hamstring autograft size can be predicted and is a potential risk factor for anterior cruciate ligament reconstruction failure. Arthroscopy 30(7):882–890

    Article  PubMed  Google Scholar 

  9. Corry IS, Webb JM, Clingeleffer AJ, Pinczewski LA (1999) Arthroscopic reconstruction of the anterior cruciate ligament. A comparison of patellar tendon autograft and four-strand hamstring tendon autograft. Am J Sports Med 27(4):444–454

    Article  CAS  PubMed  Google Scholar 

  10. Han Y, Kurzencwyg D, Hart A, Powell T, Martineau PA (2012) Measuring the anterior cruciate ligament’s footprints by three-dimensional magnetic resonance imaging. Knee Surg Sports Traumatol Arthrosc 20(5):986–995

    Article  PubMed  Google Scholar 

  11. Iriuchishima T, Ryu K, Aizawa S, Fu FH (2014) Proportional evaluation of anterior cruciate ligament footprint size and knee bony morphology. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-014-3139-6

    Google Scholar 

  12. Iriuchishima T, Tajima G, Shirakura K et al (2011) In vitro and in vivo AM and PL tunnel positioning in anatomical double bundle anterior cruciate ligament reconstruction. Arch Orthop Trauma Surg 131(8):1085–1090

    Article  PubMed  Google Scholar 

  13. Iriuchishima T, Yorifuji H, Aizawa S et al (2014) Evaluation of ACL mid-substance cross-sectional area for reconstructed autograft selection. Knee Surg Sports Traumatol Arthrosc 22(1):207–213

    Article  PubMed  Google Scholar 

  14. Karlsson J, Irrgang JJ, van Eck CF, Samuelsson K, Mejia HA, Fu FH (2011) Anatomic single- and double-bundle anterior cruciate ligament reconstruction, part 2: clinical application of surgical technique. Am J Sports Med 39(9):2016–2026

    Article  PubMed  Google Scholar 

  15. Kopf S, Musahl V, Tashman S, Szczodry M, Shen W, Fu FH (2009) A systematic review of the femoral origin and tibial insertion morphology of the ACL. Knee Surg Sports Traumatol Arthrosc 17(3):213–219

    Article  PubMed  Google Scholar 

  16. Kopf S, Pombo MW, Szczodry M, Irrgang JJ, Fu FH (2011) Size variability of the human anterior cruciate ligament insertion sites. Am J Sports Med 39(1):108–113

    Article  PubMed  Google Scholar 

  17. Kraeutler MJ, Bravman JT, McCarty EC (2013) Bone-patellar tendon-bone autograft versus allograft in outcomes of anterior cruciate ligament reconstruction: a meta-analysis of 5182 patients. Am J Sports Med 41(10):2439–2448

    Article  PubMed  Google Scholar 

  18. Ma CB, Keifa E, Dunn W, Fu FH, Harner CD (2010) Can pre-operative measures predict quadruple hamstring graft diameter? Knee 17(1):81–83

    Article  PubMed  Google Scholar 

  19. Magnussen RA, Lawrence JTR, West RL, Toth AP, Taylor DC, Garrett WE (2012) Graft size and patient age are predictors of early revision after anterior cruciate ligament reconstruction with hamstring autograft. Arthroscopy 28(4):526–531

    Article  PubMed  Google Scholar 

  20. Mariscalco MW, Flanigan DC, Mitchell J et al (2013) The influence of hamstring autograft size on patient-reported outcomes and risk of revision after anterior cruciate ligament reconstruction: a Multicenter Orthopaedic Outcomes Network (MOON) Cohort Study. Arthroscopy 29(12):1948–1953

    Article  PubMed  Google Scholar 

  21. Middleton KK, Muller B, Araujo PH et al (2014) Is the native ACL insertion site “completely restored” using an individualized approach to single-bundle ACL-R? Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-014-3043-0

    Google Scholar 

  22. Miyawaki M, Hensler D, Illingworth KD, Irrgang JJ, Fu FH (2014) Signal intensity on magnetic resonance imaging after allograft double-bundle anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 22(5):1002–1008

    Article  PubMed  Google Scholar 

  23. Muller B, Hofbauer M, Wongcharoenwatana J, Fu FH (2013) Indications and contraindications for double-bundle ACL reconstruction. Int Orthop (SICOT) 37(2):239–246

    Article  Google Scholar 

  24. Niki Y, Hakozaki A, Iwamoto W et al (2012) Factors affecting anterior knee pain following anatomic double-bundle anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 20(8):1543–1549

    Article  PubMed  Google Scholar 

  25. Park JH, Lee YS, Park JW, Wang JH, Kim JG (2010) A comparative study of screw and helical proximal femoral nails for the treatment of intertrochanteric fractures. Orthopedics 33(2):81–85

    Article  PubMed  Google Scholar 

  26. Park SY, Oh H, Park S, Lee JH, Lee SH, Yoon KH (2013) Factors predicting hamstring tendon autograft diameters and resulting failure rates after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 21(5):1111–1118

    Article  PubMed  Google Scholar 

  27. Prodromos CC, Han YS, Keller BL, Bolyard RJ (2005) Posterior mini-incision technique for hamstring anterior cruciate ligament reconstruction graft harvest. Arthroscopy 21(2):130–137

    Article  PubMed  Google Scholar 

  28. Prodromos CC (2010) Posterior mini-incision hamstring harvest. Sports Med Arthrosc 18(1):12–14

    Article  PubMed  Google Scholar 

  29. Rabuck SJ, Middleton KK, Maeda S et al (2012) Individualized anatomic anterior cruciate ligament reconstruction. Arthrosc Tech 1(1):e23–e29

    Article  PubMed  PubMed Central  Google Scholar 

  30. Rabuck SJ, Musahl V, Fu FH, West RV (2013) Anatomic anterior cruciate ligament reconstruction with quadriceps tendon autograft. Clin Sports Med 32(1):155–164

    Article  PubMed  Google Scholar 

  31. Schreiber VM, van Eck CF, Fu FH (2010) Anatomic double-bundle ACL reconstruction. Sports Med Arthrosc 18(1):27–32

    Article  PubMed  Google Scholar 

  32. Thomas S, Bhattacharya R, Saltikov JB, Kramer DJ (2013) Influence of anthropometric features on graft diameter in ACL reconstruction. Arch Orthop Trauma Surg 133(2):215–218

    Article  CAS  PubMed  Google Scholar 

  33. Treme G, Diduch DR, Billante MJ, Miller MD, Hart JM (2008) Hamstring graft size prediction: a prospective clinical evaluation. Am J Sports Med 36(11):2204–2209

    Article  PubMed  Google Scholar 

  34. Tuman JM, Diduch DR, Rubino LJ, Baumfeld JA, Nguyen HS, Hart JM (2007) Predictors for hamstring graft diameter in anterior cruciate ligament reconstruction. Am J Sports Med 35(11):1945–1949

    Article  PubMed  Google Scholar 

  35. van Eck CF, Lesniak BP, Schreiber VM, Fu FH (2010) Anatomic single- and double-bundle anterior cruciate ligament reconstruction flowchart. Arthroscopy 26(2):258–268

    Article  PubMed  Google Scholar 

  36. Vidal C, Guingand O, de Thomasson E et al (2012) Painful patellofemoral instability secondary to peroperative patellar fracture during bone-patellar tendon-bone autograft harvesting for anterior cruciate ligament reconstruction. Orthop Traumatol Surg Res 98(6):733–735

    Article  CAS  PubMed  Google Scholar 

  37. Wernecke G, Harris IA, Houang MTW, Seeto BG, Chen DB, MacDessi SJ (2011) Using magnetic resonance imaging to predict adequate graft diameters for autologous hamstring double-bundle anterior cruciate ligament reconstruction. Arthroscopy 27(8):1055–1059

    Article  PubMed  Google Scholar 

  38. Xie G, Huangfu X, Zhao J (2012) Prediction of the graft size of 4-stranded semitendinosus tendon and 4-stranded gracilis tendon for anterior cruciate ligament reconstruction: a Chinese Han patient study. Am J Sports Med 40(5):1161–1166

    Article  PubMed  Google Scholar 

  39. Yasuda K, van Eck CF, Hoshino Y, Fu FH, Tashman S (2011) Anatomic single- and double-bundle anterior cruciate ligament reconstruction, part 1: basic science. Am J Sports Med 39(8):1789–1799

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Freddie H. Fu.

Additional information

The Department of Orthopaedic Surgery at the University of Pittsburgh receives funding from Smith and Nephew to support research related to reconstruction of the ACL.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakko, P., van Eck, C.F., Guenther, D. et al. Can we predict the size of frequently used autografts in ACL reconstruction?. Knee Surg Sports Traumatol Arthrosc 25, 3704–3710 (2017). https://doi.org/10.1007/s00167-015-3695-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-015-3695-4

Keywords

Navigation