Skip to main content
Log in

Effect of fixation angle and graft tension in double-bundle anterior cruciate ligament reconstruction on knee biomechanics

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

To compare the effect of graft fixation angle and tension in double-bundle anterior cruciate ligament (ACL) reconstruction on knee biomechanics.

Methods

Fourteen cadaver knees were tested using a robotic system under two loadings: (1) an 89-N anterior tibial load (ATL) at full extension (FE), 15°, 30°, 45°, 60°, and 90°, and (2) combined 7 N m valgus and 5 N m internal tibial torques (simulated pivot-shift test) at FE, 15° and 30°. Four graft fixation angles and tensions were used for the anteromedial (AM) and posterolateral (PL) bundles, respectively: (Recon 1) 30°/20N and FE/20N, (Recon 2) 30°/30N and FE/10N, (Recon 3) 45°/20N and 15°/20N, and (Recon 4) 45°/30N and 15°/10N.

Results

All fixation protocols closely restored the intact knee kinematics under ATL and simulated pivot-shift loading. For the AM bundle under ATL, the in situ force (ISF) with Recon 3 at the FE was significantly lower than that of the intact knee. For the PL bundle under ATL, the ISF with Recon 3 at the FE, 15° and 30° was significantly higher than that of the intact knee. In PL bundle under simulated pivot-shift loading, the ISF with Recon 1 and Recon 2 at FE was lower and the ISF of the PL bundle with Recon 3 at the 15° was higher than that of the intact knee.

Conclusion

The AM-45°/30N and PL-15°/10N fixation most closely matched intact knee kinematics; however, stabilizing the knee during anterior tibial translation may risk an imbalance of the AM and the PL bundle loading. The results indicate that ACL bundle forces may not be restored even if the clinical assessment shows good results with the Lachman test and pivot-shift test. This may alter the loading on other structures of the knee.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Araki D, Kuroda R, Kubo S, Fujita N, Tei K, Nishimoto K, Hoshino Y, Matsushita T, Matsumoto T, Nagamune K, Kurosaka M (2011) A prospective randomised study of anatomical single-bundle versus double-bundle anterior cruciate ligament reconstruction: quantitative evaluation using an electromagnetic measurement system. Int Orthop 35(3):439–446

    Article  PubMed  Google Scholar 

  2. Arnold MP (2005) The normal anterior cruciate ligament as a model for tensioning strategies in anterior cruciate ligament grafts. Am J Sports Med 33(2):277–283

    Article  PubMed  Google Scholar 

  3. Bach BR Jr, Warren RF, Flynn WM, Kroll M, Wickiewiecz TL (1990) Arthrometric evaluation of knees that have a torn anterior cruciate ligament. J Bone Joint Surg Am 72(9):1299–1306

    PubMed  Google Scholar 

  4. Boylan D, Greis PE, West JR, Bachus KN, Burks RT (2003) Effects of initial graft tension on knee stability after anterior cruciate ligament reconstruction using hamstring tendons: a cadaver study. Arthroscopy 19(7):700–705

    Article  PubMed  Google Scholar 

  5. Brady MF, Bradley MP, Fleming BC, Fadale PD, Hulstyn MJ, Banerjee R (2007) Effects of initial graft tension on the tibiofemoral compressive forces and joint position after anterior cruciate ligament reconstruction. Am J Sports Med 35(3):395–403

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chhabra A, Starman JS, Ferretti M, Vidal AF, Zantop T, Fu FH (2006) Anatomic, radiographic, biomechanical, and kinematic evaluation of the anterior cruciate ligament and its two functional bundles. J Bone Joint Surg Am 88(Suppl 4):2–10

    Article  PubMed  Google Scholar 

  7. Cohen SB, Fu FH (2007) Three-portal technique for anterior cruciate ligament reconstruction: use of a central medial portal. Arthroscopy 23:325.e1–325.e5

    Google Scholar 

  8. Desai N, Bjornsson H, Musahl V, Bhandari M, Petzold M, Fu FH, Samuelsson K (2014) Anatomic single-versus double-bundle ACL reconstruction: a meta-analysis. Knee Surg Sports Traumatol Arthrosc 22(5):1009–1023

    Article  PubMed  Google Scholar 

  9. Fujie H, Livesay GA, Woo SL, Kashiwaguchi S, Blomstrom G (1995) The use of a universal force-moment sensor to determine in situ forces in ligaments: a new methodology. J Biomech Eng 117(1):1–7

    Article  CAS  PubMed  Google Scholar 

  10. Fujie H, Mabuchi K, Woo SL, Livesay GA, Arai S, Tsukamoto Y (1993) The use of robotics technology to study human joint kinematics: a new methodology. J Biomech Eng 115(3):211–217

    Article  CAS  Google Scholar 

  11. Girgis FG, Marshall JL, Monajem A (1975) The cruciate ligaments of the knee joint: anatomical, functional and experimental analysis. Clin Orthop Relat Res 106:216–231

    Article  PubMed  Google Scholar 

  12. Harner CD, Giffin JR, Dunteman RC, Annunziata CC, Friedman MJ (2001) Evaluation and treatment of recurrent instability after anterior cruciate ligament reconstruction. Instr Course Lect 50:463–474

    CAS  PubMed  Google Scholar 

  13. Hoher J, Kanamori A, Zeminski J, Fu FH, Woo SL (2001) The position of the tibia during graft fixation affects knee kinematics and graft forces for anterior cruciate ligament reconstruction. Am J Sports Med 29(6):771–776

    CAS  PubMed  Google Scholar 

  14. Hussein M, van Eck CF, Cretnik A, Dinevski D, Fu FH (2012) Prospective randomized clinical evaluation of conventional single-bundle, anatomic single-bundle, and anatomic double-bundle anterior cruciate ligament reconstruction: 281 cases with 3- to 5-year follow-up. Am J Sports Med 40(3):512–520

    Article  PubMed  Google Scholar 

  15. Ishibashi Y, Tsuda E, Fukuda A, Tsukada H, Toh S (2008) Intraoperative biomechanical evaluation of anatomic anterior cruciate ligament reconstruction using a navigation system: comparison of hamstring tendon and bone-patellar tendon-bone graft. Am J Sports Med 36(10):1903–1912

    Article  PubMed  Google Scholar 

  16. Jarvela T (2007) Double-bundle versus single-bundle anterior cruciate ligament reconstruction: a prospective, randomize clinical study. Knee Surg Sports Traumatol Arthrosc 15(5):500–507

    Article  PubMed  Google Scholar 

  17. Kanamori A, Woo SL, Ma CB, Zeminski J, Rudy TW, Li G, Livesay GA (2000) The forces in the anterior cruciate ligament and knee kinematics during a simulated pivot shift test: a human cadaveric study using robotic technology. Arthroscopy 16(6):633–639

    Article  CAS  PubMed  Google Scholar 

  18. Kanamori A, Zeminski J, Rudy TW, Li G, Fu FH, Woo SL (2002) The effect of axial tibial torque on the function of the anterior cruciate ligament: a biomechanical study of a simulated pivot shift test. Arthroscopy 18(4):394–398

    Article  PubMed  Google Scholar 

  19. Kim SG, Kurosawa H, Sakuraba K, Ikeda H, Takazawa S (2006) The effect of initial graft tension on postoperative clinical outcome in anterior cruciate ligament reconstruction with semitendinosus tendon. Arch Orthop Trauma Surg 126(4):260–264

    Article  PubMed  Google Scholar 

  20. Koga H, Muneta T, Yagishita K, Ju YJ, Sekiya I (2012) The effect of graft fixation angles on anteroposterior and rotational knee laxity in double-bundle anterior cruciate ligament reconstruction: evaluation using computerized navigation. Am J Sports Med 40(3):615–623

    Article  PubMed  Google Scholar 

  21. Koga H, Muneta T, Yagishita K, Watanabe T, Mochizuki T, Horie M, Nakamura T, Sekiya I (2014) Effect of femoral tunnel position on graft tension curves and knee stability in anatomic double-bundle anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 22(11):2811–2820

    Article  PubMed  Google Scholar 

  22. Kondo E, Yasuda K, Miyatake S, Kitamura N, Tohyama H, Yagi T (2012) Clinical comparison of two suspensory fixation devices for anatomic double-bundle anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 20(7):1261–1267

    Article  PubMed  Google Scholar 

  23. Livesay GA, Fujie H, Kashiwaguchi S, Morrow DA, Fu FH, Woo SL (1995) Determination of the in situ forces and force distribution within the human anterior cruciate ligament. Ann Biomed Eng 23(4):467–474

    Article  CAS  PubMed  Google Scholar 

  24. Mae T, Shino K, Matsumoto N, Hamada M, Yoneda M, Nakata K (2007) Anatomical two-bundle versus Rosenberg’s isometric bi-socket ACL reconstruction: a biomechanical comparison in laxity match pretension. Knee Surg Sports Traumatol Arthrosc 15(4):328–334

    Article  PubMed  Google Scholar 

  25. Mae T, Shino K, Matsumoto N, Nakata K, Kinugasa K, Yoshikawa H, Yoneda M (2012) In vivo graft tension in anatomic double-bundle anterior cruciate ligament reconstruction during active leg-raising motion with the knee splinted. Arthroscopy 28(4):532–538

    Article  PubMed  Google Scholar 

  26. Mae T, Shino K, Matsumoto N, Natsu-Ume T, Yoneda K, Yoshikawa H, Yoneda M (2010) Anatomic double-bundle anterior cruciate ligament reconstruction using hamstring tendons with minimally required initial tension. Arthroscopy 26(10):1289–1295

    Article  PubMed  Google Scholar 

  27. Mae T, Shino K, Miyama T, Shinjo H, Ochi T, Yoshikawa H, Fujie H (2001) Single-versus two-femoral socket anterior cruciate ligament reconstruction technique. Arthroscopy 17(7):708–716

    Article  CAS  PubMed  Google Scholar 

  28. Mae T, Shino K, Nakata K, Toritsuka Y, Otsubo H, Fujie H (2008) Optimization of graft fixation at the time of anterior cruciate ligament reconstruction. Part I: effect of initial tension. Am J Sports Med 36(6):1087–1093

    Article  PubMed  Google Scholar 

  29. Melby A 3rd, Noble JS, Askew MJ, Boom AA, Hurst FW (1991) The effects of graft tensioning on the laxity and kinematics of the anterior cruciate ligament reconstructed knee. Arthroscopy 7(3):257–266

    Article  PubMed  Google Scholar 

  30. Miura K, Woo SL, Brinkley R, Fu YC, Noorani S (2006) Effects of knee flexion angles for graft fixation on force distribution in double-bundle anterior cruciate ligament grafts. Am J Sports Med 34(4):577–585

    Article  PubMed  Google Scholar 

  31. Moon DK, Woo SL, Takakura Y, Gabriel MT, Abramowitch SD (2006) The effects of refreezing on the viscoelastic and tensile properties of ligaments. J Biomech 39(6):1153–1157

    Article  PubMed  Google Scholar 

  32. Muneta T, Koga H, Ju YJ, Yagishita K, Sekiya I (2011) Effects of different initial bundle tensioning strategies on the outcome of double-bundle ACL reconstruction: a cohort study. Sports Med Arthrosc Rehabil Ther Technol 3:15

    Article  PubMed  PubMed Central  Google Scholar 

  33. Murray PJ, Alexander JW, Gold JE, Icenogle KD, Noble PC, Lowe WR (2010) Anatomic double-bundle anterior cruciate ligament reconstruction: kinematics and knee flexion angle-graft tension relation. Arthroscopy 26(2):202–213

    Article  PubMed  Google Scholar 

  34. Nabors ED, Richmond JC, Vannah WM, McConville OR (1995) Anterior cruciate ligament graft tensioning in full extension. Am J Sports Med 23(4):488–492

    Article  CAS  PubMed  Google Scholar 

  35. Nicholas SJ (2004) A prospectively randomized double-blind study on the effect of initial graft tension on knee stability after anterior cruciate ligament reconstruction. Am J Sports Med 32(8):1881–1886

    Article  PubMed  Google Scholar 

  36. Numazaki H, Tohyama H, Nakano H, Kikuchi S, Yasuda K (2002) The effect of initial graft tension in anterior cruciate ligament reconstruction on the mechanical behaviors of the femur-graft-tibia complex during cyclic loading. Am J Sports Med 30(6):800–805

    PubMed  Google Scholar 

  37. Otsubo H, Shino K, Nakamura N, Nakata K, Nakagawa S, Koyanagi M (2007) Arthroscopic evaluation of ACL grafts reconstructed with the anatomical two-bundle technique using hamstring tendon autograft. Knee Surg Sports Traumatol Arthrosc 15(6):720–728

    Article  PubMed  Google Scholar 

  38. Petersen W, Tretow H, Weimann A, Herbort M, Fu FH, Raschke M, Zantop T (2007) Biomechanical evaluation of two techniques for double-bundle anterior cruciate ligament reconstruction: one tibial tunnel versus two tibial tunnels. Am J Sports Med 35(2):228–234

    Article  PubMed  Google Scholar 

  39. Rudy TW, Livesay GA, Woo SL, Fu FH (1996) A combined robotic/universal force sensor approach to determine in situ forces of knee ligaments. J Biomech 29(10):1357–1360

    Article  CAS  PubMed  Google Scholar 

  40. Sakane M, Fox RJ, Woo SL, Livesay GA, Li G, Fu FH (1997) In situ forces in the anterior cruciate ligament and its bundles in response to anterior tibial loads. J Orthop Res 15(2):285–293

    Article  CAS  PubMed  Google Scholar 

  41. Shi D, Zhou J, Yapici C, Linde-Rosen M, Smolinski P, Fu FH (2014) Effect of graft fixation sequence on knee joint biomechanics in double-bundle anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-014-3158-3

    Google Scholar 

  42. van Kampen A, Wymenga AB, van der Heide HJ, Bakens HJ (1998) The effect of different graft tensioning in anterior cruciate ligament reconstruction: a prospective randomized study. Arthroscopy 14(8):845–850

    Article  PubMed  Google Scholar 

  43. Vercillo F, Woo SL, Noorani SY, Dede O (2007) Determination of a safe range of knee flexion angles for fixation of the grafts in double-bundle anterior cruciate ligament reconstruction: a human cadaveric study. Am J Sports Med 35(9):1513–1520

    Article  PubMed  Google Scholar 

  44. Woo SL, Orlando CA, Camp JF, Akeson WH (1986) Effects of postmortem storage by freezing on ligament tensile behavior. J Biomech 19(5):399–404

    Article  CAS  PubMed  Google Scholar 

  45. Xu Y, Liu J, Kramer S, Martins C, Kato Y, Linde-Rosen M, Smolinski P, Fu FH (2011) Comparison of in situ forces and knee kinematics in anteromedial and high anteromedial bundle augmentation for partially ruptured anterior cruciate ligament. Am J Sports Med 39(2):272–278

    Article  PubMed  Google Scholar 

  46. Yagi M, Wong EK, Kanamori A, Debski RE, Fu FH, Woo SL (2002) Biomechanical analysis of an anatomic anterior cruciate ligament reconstruction. Am J Sports Med 30(5):660–666

    PubMed  Google Scholar 

  47. Yasuda K, Ichiyama H, Kondo E, Miyatake S, Inoue M, Tanabe Y (2008) An in vivo biomechanical study on the tension-versus-knee flexion angle curves of 2 grafts in anatomic double-bundle anterior cruciate ligament reconstruction: effects of initial tension and internal tibial rotation. Arthroscopy 24(3):276–284

    Article  PubMed  Google Scholar 

  48. Yoshiya S, Andrish JT, Manley MT, Bauer TW (1987) Graft tension in anterior cruciate ligament reconstruction: an in vivo study in dogs. Am J Sports Med 15(5):464–470

    Article  CAS  PubMed  Google Scholar 

  49. Zaffagnini S, Marcheggiani Muccioli GM, Signorelli C, Lopomo N, Grassi A, Bonanzinga T, Nitri M, Marcacci M (2014) Anatomic and nonanatomic double-bundle anterior cruciate ligament reconstruction: an in vivo kinematic analysis. Am J Sports Med 42(3):708–715

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors have no conflict of interest to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Freddie H. Fu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sasaki, Y., Chang, SS., Fujii, M. et al. Effect of fixation angle and graft tension in double-bundle anterior cruciate ligament reconstruction on knee biomechanics. Knee Surg Sports Traumatol Arthrosc 24, 2892–2898 (2016). https://doi.org/10.1007/s00167-015-3552-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-015-3552-5

Keywords

Navigation