Skip to main content
Log in

Mechanostimulation changes the catabolic phenotype of human dedifferentiated osteoarthritic chondrocytes

  • Experimental Study
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

The treatment of cartilage defects with matrix-embedded autologous chondrocytes is a promising method to support the repair process and to foster reconstitution of full functionality of the joint.

Methods

Human osteoarthritic chondrocytes were harvest from nine different patients (mean ± SD age 68 ± 8 years) who underwent total knee replacement. The chondrocytes were embedded after a precultivation phase into a collagen I hydrogel. Mid-term intermitted mechanostimulation on matrix-embedded dedifferentiated human osteoarthritic chondrocytes was performed by intermittently applying a cyclic sinusoid compression regime for 4 days (cycles of 1 h of sinusoidal stimulation (1 Hz) and 4 h of break; maximum compression 2.5 %). Stimulated (Flex) and non-stimulated (No Flex) cell matrix constructs were analysed concerning the expression of genes involved in tissue metabolism, the content of sulphated glycosaminoglycans (sGAG) and the morphology of the chondrocytes.

Results

Gene expression analysis showed a high significant increase in collagen type II expression (p < 0.001), a significant increase in aggrecan expression (p < 0.04) and a high significant decrease in MMP-13 expression (p < 0.001) under stimulation condition compared with unstimulated controls. No significant changes were found in the gene expression rate of MMP-3. This positive effect of the mechanostimulation was confirmed by the analyses of sGAG. Mechanically stimulated cell–matrix constructs had nearly tripled sGAG content than the non-stimulated control (p < 0.002). In addition, histological examination showed that morphology of chondrocytes was altered from a spindle-shaped to a chondrocyte-characteristic rounded phenotype.

Conclusion

Mid-term intermitted mechanical stimulation in vitro has the potential to improve the cell quality of cell matrix constructs prepared from dedifferentiated osteoarthritic chondrocytes. This observation may extend the inclusion criteria for matrix-assisted autologous chondrocyte implantation (MACI) and confirms the importance of moderate dynamic compression in clinical rehabilitation after MACI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aigner T (2007) Osteoarthritis. Curr Opin Rheumatol 19(5):427–428

    Article  PubMed  Google Scholar 

  2. Aigner T, Fundel K, Saas J, Gebhard PM, Haag J, Weiss T, Zien A, Obermayr F, Zimmer R, Bartnik E (2006) Large-scale gene expression profiling reveals major pathogenetic pathways of cartilage degeneration in osteoarthritis. Arthritis Rheum 54(11):3533–3544

    Article  CAS  PubMed  Google Scholar 

  3. Aigner T, Soder S, Gebhard PM, McAlinden A, Haag J (2007) Mechanisms of disease: role of chondrocytes in the pathogenesis of osteoarthritis–structure, chaos and senescence. Nat Clin Pract 3(7):391–399

    Article  CAS  Google Scholar 

  4. Almarza AJ, Athanasiou KA (2004) Design characteristics for the tissue engineering of cartilaginous tissues. Ann Biomed Eng 32(1):2–17

    Article  PubMed  Google Scholar 

  5. Ando K, Imai S, Isoya E, Kubo M, Mimura T, Shioji S, Ueyama H, Matsusue Y (2009) Effect of dynamic compressive loading and its combination with a growth factor on the chondrocytic phenotype of 3-dimensional scaffold-embedded chondrocytes. Acta Orthop 80(6):724–733

    Article  PubMed Central  PubMed  Google Scholar 

  6. Barbero A, Grogan SP, Mainil-Varlet P, Martin I (2006) Expansion on specific substrates regulates the phenotype and differentiation capacity of human articular chondrocytes. J Cell Biochem 98(5):1140–1149

    Article  CAS  PubMed  Google Scholar 

  7. Barbosa I, Garcia S, Barbier-Chassefiere V, Caruelle JP, Martelly I, Papy-Garcia D (2003) Improved and simple micro assay for sulfated glycosaminoglycans quantification in biological extracts and its use in skin and muscle tissue studies. Glycobiology 13(9):647–653

    Article  CAS  PubMed  Google Scholar 

  8. Benya PD, Shaffer JD (1982) Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 30(1):215–224

    Article  CAS  PubMed  Google Scholar 

  9. Chokalingam K, Hunter S, Gooch C, Frede C, Florer J, Wenstrup R, Butler D (2009) Three-dimensional in vitro effects of compression and time in culture on aggregate modulus and on gene expression and protein content of collagen type II in murine chondrocytes. Tissue Eng 15(10):2807–2816

    Article  CAS  Google Scholar 

  10. Davisson T, Kunig S, Chen A, Sah R, Ratcliffe A (2002) Static and dynamic compression modulate matrix metabolism in tissue engineered cartilage. J Orthop Res 20(4):842–848

    Article  CAS  PubMed  Google Scholar 

  11. Demarteau O, Wendt D, Braccini A, Jakob M, Schafer D, Heberer M, Martin I (2003) Dynamic compression of cartilage constructs engineered from expanded human articular chondrocytes. Biochem Biophys Res Commun 310(2):580–588

    Article  CAS  PubMed  Google Scholar 

  12. Dorotka R, Windberger U, Macfelda K, Bindreiter U, Toma C, Nehrer S (2005) Repair of articular cartilage defects treated by microfracture and a three-dimensional collagen matrix. Biomaterials 26(17):3617–3629

    Article  CAS  PubMed  Google Scholar 

  13. Edwards PK, Ackland T, Ebert JR (2014) Clinical rehabilitation guidelines for matrix-induced autologous chondrocyte implantation on the tibiofemoral joint. J Orthop Sports Phys Ther 44(2):102–119

    Article  PubMed  Google Scholar 

  14. Fehrenbacher A, Steck E, Rickert M, Roth W, Richter W (2003) Rapid regulation of collagen but not metalloproteinase 1, 3, 13, 14 and tissue inhibitor of metalloproteinase 1, 2, 3 expression in response to mechanical loading of cartilage explants in vitro. Arch Biochem Biophys 410(1):39–47

    Article  CAS  PubMed  Google Scholar 

  15. Fitzgerald JB, Jin M, Chai DH, Siparsky P, Fanning P, Grodzinsky AJ (2008) Shear- and compression-induced chondrocyte transcription requires MAPK activation in cartilage explants. J Biol Chem 283(11):6735–6743

    Article  CAS  PubMed  Google Scholar 

  16. Giannoni P, Siegrist M, Hunziker EB, Wong M (2003) The mechanosensitivity of cartilage oligomeric matrix protein (COMP). Biorheology 40(1–3):101–109

    CAS  PubMed  Google Scholar 

  17. Grogan SP, Sovani S, Pauli C, Chen J, Hartmann A, Colwell CW Jr, Lotz MK, D’Lima DD (2012) Effects of perfusion and dynamic loading on human neocartilage formation in alginate hydrogels. Tissue Eng 18(17–18):1784–1792

    Article  CAS  Google Scholar 

  18. Guilak F, Butler DL, Goldstein SA (2014) Biomechanics and mechanobiology in functional tissue engineering. J Biomech 47(9):1933–40

  19. Heijink A, Gomoll AH, Madry H, Drobnic M, Filardo G, Espregueira-Mendes J, Van Dijk CN (2012) Biomechanical considerations in the pathogenesis of osteoarthritis of the knee. Knee Surg Sports Traumatol Arthrosc 20(3):423–435

    Article  PubMed Central  PubMed  Google Scholar 

  20. Hilz FM, Ahrens P, Grad S, Stoddart MJ, Dahmani C, Wilken FL, Sauerschnig M, Niemeyer P, Zwingmann J, Burgkart R, von Eisenhart-Rothe R, Sudkamp NP, Weyh T, Imhoff AB, Alini M, Salzmann GM (2014) Influence of extremely low frequency, low energy electromagnetic fields and combined mechanical stimulation on chondrocytes in 3-D constructs for cartilage tissue engineering. Bioelectromagnetics 35(2):116–128

    Article  CAS  PubMed  Google Scholar 

  21. Hunter CJ, Imler SM, Malaviya P, Nerem RM, Levenston ME (2002) Mechanical compression alters gene expression and extracellular matrix synthesis by chondrocytes cultured in collagen I gels. Biomaterials 23(4):1249–1259

    Article  CAS  PubMed  Google Scholar 

  22. Jacobi M, Villa V, Magnussen RA, Neyret P (2011) MACI—a new era? Sports Med Arthrosc Rehabil Ther 3(1):10

    Article  Google Scholar 

  23. Jeon JE, Schrobback K, Hutmacher DW, Klein TJ (2012) Dynamic compression improves biosynthesis of human zonal chondrocytes from osteoarthritis patients. Osteoarthritis Cartilage 20(8):906–915

    Article  CAS  PubMed  Google Scholar 

  24. Johnstone B, Alini M, Cucchiarini M, Dodge GR, Eglin D, Guilak F, Madry H, Mata A, Mauck RL, Semino CE, Stoddart MJ (2013) Tissue engineering for articular cartilage repair—the state of the art. Eur Cell Mater 25:248–267

    CAS  PubMed  Google Scholar 

  25. Jung Y, Kim SH, Kim YH (2009) The effects of dynamic and three-dimensional environments on chondrogenic differentiation of bone marrow stromal cells. Biomed Mater 4(5):055009

    Article  PubMed  Google Scholar 

  26. Kisiday JD, Jin M, DiMicco MA, Kurz B, Grodzinsky AJ (2004) Effects of dynamic compressive loading on chondrocyte biosynthesis in self-assembling peptide scaffolds. J Biomech 37(5):595–604

    Article  PubMed  Google Scholar 

  27. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  28. Madry H, Luyten FP, Facchini A (2012) Biological aspects of early osteoarthritis. Knee Surg Sports Traumatol Arthrosc 20(3):407–422

    Article  PubMed  Google Scholar 

  29. Mauck RL, Byers BA, Yuan X, Tuan RS (2007) Regulation of cartilaginous ECM gene transcription by chondrocytes and MSCs in 3D culture in response to dynamic loading. Biomech Model Mechanobiol 6(1–2):113–125

    Article  CAS  PubMed  Google Scholar 

  30. Mauck RL, Soltz MA, Wang CC, Wong DD, Chao PH, Valhmu WB, Hung CT, Ateshian GA (2000) Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels. J Biomech Eng 122(3):252–260

    Article  CAS  PubMed  Google Scholar 

  31. Mauck RL, Wang CC, Oswald ES, Ateshian GA, Hung CT (2003) The role of cell seeding density and nutrient supply for articular cartilage tissue engineering with deformational loading. Osteoarthritis Cartilage 11(12):879–890

    Article  CAS  PubMed  Google Scholar 

  32. Muller-Rath R, Gavenis K, Andereya S, Mumme T, Schmidt-Rohlfing B, Schneider U (2007) A novel rat tail collagen type-I gel for the cultivation of human articular chondrocytes in low cell density. Int J Artif Organs 30(12):1057–1067

    CAS  PubMed  Google Scholar 

  33. Nebelung S, Gavenis K, Luring C, Zhou B, Mueller-Rath R, Stoffel M, Tingart M, Rath B (2012) Simultaneous anabolic and catabolic responses of human chondrocytes seeded in collagen hydrogels to long-term continuous dynamic compression. Ann Anat 194(4):351–358

    Article  CAS  PubMed  Google Scholar 

  34. Nebelung S, Gavenis K, Rath B, Tingart M, Ladenburger A, Stoffel M, Zhou B, Mueller-Rath R (2011) Continuous cyclic compressive loading modulates biological and mechanical properties of collagen hydrogels seeded with human chondrocytes. Biorheology 48(5):247–261

    CAS  PubMed  Google Scholar 

  35. Nebelung S, Ladenburger A, Gavenis K, Stoffel M, Andereya S, Muller-Rath R (2011) Tissue engineering of cartilage replacement material–mechanical stimulation in the in vitro cultivation of human chondrocytes. Z Orthop Unfall 149(1):52–60

    CAS  PubMed  Google Scholar 

  36. Nehrer S, Breinan HA, Ramappa A, Young G, Shortkroff S, Louie LK, Sledge CB, Yannas IV, Spector M (1997) Matrix collagen type and pore size influence behaviour of seeded canine chondrocytes. Biomaterials 18(11):769–776

    Article  CAS  PubMed  Google Scholar 

  37. Nicodemus GD, Bryant SJ (2010) Mechanical loading regimes affect the anabolic and catabolic activities by chondrocytes encapsulated in PEG hydrogels. Osteoarthritis Cartilage 18(1):126–137

    Article  CAS  PubMed  Google Scholar 

  38. Pleumeekers MM, Nimeskern L, Koevoet WL, Kops N, Poublon RM, Stok KS, van Osch GJ (2014) The in vitro and in vivo capacity of culture-expanded human cells from several sources encapsulated in alginate to form cartilage. Eur Cell Mater 27:264–280

    CAS  PubMed  Google Scholar 

  39. Schnabel M, Marlovits S, Eckhoff G, Fichtel I, Gotzen L, Vecsei V, Schlegel J (2002) Dedifferentiation-associated changes in morphology and gene expression in primary human articular chondrocytes in cell culture. Osteoarthritis Cartilage 10(1):62–70

    Article  CAS  PubMed  Google Scholar 

  40. Shahin K, Doran PM (2012) Tissue engineering of cartilage using a mechanobioreactor exerting simultaneous mechanical shear and compression to simulate the rolling action of articular joints. Biotechnol Bioeng 109(4):1060–1073

    Article  CAS  PubMed  Google Scholar 

  41. Shelton JC, Bader DL, Lee DA (2003) Mechanical conditioning influences the metabolic response of cell-seeded constructs. Cells Tissues Organs 175(3):140–150

    Article  PubMed  Google Scholar 

  42. Smith GN Jr (2006) The role of collagenolytic matrix metalloproteinases in the loss of articular cartilage in osteoarthritis. Front Biosci 11:3081–3095

    Article  CAS  PubMed  Google Scholar 

  43. Smith RL, Lindsey DP, Dhulipala L, Harris AH, Goodman SB, Maloney WJ (2011) Effects of intermittent hydrostatic pressure and BMP-2 on osteoarthritic human chondrocyte metabolism in vitro. J Orthop Res 29(3):361–368

    Article  CAS  PubMed  Google Scholar 

  44. Stockwell RA (1967) The cell density of human articular and costal cartilage. J Anat 101(Pt 4):753–763

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Stokes DG, Liu G, Dharmavaram R, Hawkins D, Piera-Velazquez S, Jimenez SA (2001) Regulation of type-II collagen gene expression during human chondrocyte de-differentiation and recovery of chondrocyte-specific phenotype in culture involves Sry-type high-mobility-group box (SOX) transcription factors. Biochem J 360(Pt 2):461–470

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Vasiliadis HS, Wasiak J (2010) Autologous chondrocyte implantation for full thickness articular cartilage defects of the knee. Cochrane Database Syst Rev 10:CD003323

    PubMed  Google Scholar 

  47. Waldman SD, Spiteri CG, Grynpas MD, Pilliar RM, Kandel RA (2004) Long-term intermittent compressive stimulation improves the composition and mechanical properties of tissue-engineered cartilage. Tissue Eng 10(9–10):1323–1331

    Article  CAS  PubMed  Google Scholar 

  48. Wang M, Sampson ER, Jin H, Li J, Ke QH, Im HJ, Chen D (2013) MMP13 is a critical target gene during the progression of osteoarthritis. Arthritis Res Ther 15(1):R5

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Wong M, Siegrist M, Cao X (1999) Cyclic compression of articular cartilage explants is associated with progressive consolidation and altered expression pattern of extracellular matrix proteins. Matrix Biol 18(4):391–399

    Article  CAS  PubMed  Google Scholar 

  50. Xie J, Han ZY, Matsuda T (2006) Mechanical compressive loading stimulates the activity of proximal region of human COL2A1 gene promoter in transfected chondrocytes. Biochem Biophys Res Commun 344(4):1192–1199

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the government of Lower Austria (Grant WST3-T-96/004-2008) and cofounded by the European Regional Development Fund and Arthro Kinetics Biotechnology GmbH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Halbwirth.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halbwirth, F., Niculescu-Morzsa, E., Zwickl, H. et al. Mechanostimulation changes the catabolic phenotype of human dedifferentiated osteoarthritic chondrocytes. Knee Surg Sports Traumatol Arthrosc 23, 104–111 (2015). https://doi.org/10.1007/s00167-014-3412-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-014-3412-8

Keywords

Navigation