Skip to main content
Log in

Human cartilage fragments in a composite scaffold for single-stage cartilage repair: an in vitro study of the chondrocyte migration and the influence of TGF-β1 and G-CSF

  • Experimental Study
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

Minced chondral fragments are becoming popular as a source of cells for cartilage repair, as a growing interest is developing towards one-stage procedures to treat cartilage lesions. The purpose of this study is to (A) compare cell outgrowth from cartilage fragments of adult and young donors using two different types of scaffolds and (B) evaluate the influence of transforming-growth-factor-β1 (TGF-β1) and granulocyte colony-stimulating factor (G-CSF) on chondrocyte behaviour.

Methods

In part (A) cartilage fragments from adult and young donors were either loaded onto an HA-derivative injectable paste scaffold or onto an HA-derivative membrane scaffold. Construct sections were then examined for cell counting after 1, 2 and 3 months. In part (B) only membrane scaffolds were prepared using cartilage fragments from young donors. Constructs were cultured either in standard growth medium or in the presence of specific growth factors, such as TGF-β1 or G-CSF or TGF-β1 + G-CSF. After 1 month, construct sections were examined for cell counting. Expression of chondrocyte markers (SOX9, CD151, CD49c) and proliferative markers (β-catenin, PCNA) was assessed using immunofluorescence techniques, both in unstimulated construct sections and in cells from unstimulated and stimulated construct cultures.

Results

Part (A): histological analysis showed age-dependent and time-dependent chondrocyte migration. A significant difference (p < 0.05) was observed between young and older donors at the same time point. No difference was detected between the two types of scaffolds within the same group at the same time point. Part (B): after 1 month, the number of migrating cells/area significantly increased due to exposure to TGF-β1 and/or G-CSF (p < 0.05). Immunofluorescence revealed that outgrowing cells from unstimulated scaffold sections were positive for SOX9, CD151, CD49c and G-CSF receptor. Immunofluorescence of cells from construct cultures showed an increase in β-catenin in all stimulated groups and an increased PCNA expression in G-CSF-exposed cultures (p < 0.05).

Conclusion

Outgrowing cells may represent a subset of chondrocytes undergoing a phenotypic shift towards a proliferative state. TGF-β1, and to a greater extent G-CSF, may accelerate this outgrowth. The clinical relevance of this study may involve a potential future clinical application of scaffolds preloaded with growth factors as an additional coating for chondral fragments. Indeed, a controlled delivery of G-CSF, widely employed in various clinical settings, might improve the repair process driven by minced human cartilage fragments during one-stage cartilage repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Adkisson HD 4th, Martin JA, Amendola RL, Milliman C, Mauch KA, Katwal AB, Seyedin M, Amendola A, Streeter PR, Buckwalter JA (2010) The potential of human allogeneic juvenile chondrocytes for restoration of articular cartilage. Am J Sports Med 38:1324–1333

    Article  PubMed  Google Scholar 

  2. Albrecht F, Roessner A, Zimmermann E (1983) Closure of osteochondral lesions using chondral fragments and fibrin adhesive. Arch Orthop Trauma Surg 101:213–217

    Article  PubMed  CAS  Google Scholar 

  3. Almqvist KF, Dhollander AAM, Verdonk PCM, Forsyth R, Verdonk R, Verbruggen G (2009) Treatment of cartilage defects in the knee using alginate beads containing human mature allogenic chondrocytes. Am J Sports Med 37:1920–1929

    Article  PubMed  Google Scholar 

  4. Anderlini P (2009) Effects and safety of granulocyte colony-stimulating factor in healthy volunteers. Curr Opin Hematol 16:35–40

    Article  PubMed  CAS  Google Scholar 

  5. Bonasia DE, Martin JA, Marmotti A, Amendola RL, Buckwalter JA, Rossi R, Blonna D, Adkisson HD 4th, Amendola A (2011) Cocultures of adult and juvenile chondrocytes compared with adult and juvenile chondral fragments: in vitro matrix production. Am J Sports Med 39:2355–2361

    Article  PubMed  Google Scholar 

  6. Brittberg M, Sjögren-Jansson E, Thornemo M, Faber B, Tarkowski A, Peterson L, Lindahl A (2005) Clonal growth of human articular cartilage and the functional role of the periosteum in chondrogenesis. Osteoarthr Cartil 13:146–153

    Article  PubMed  CAS  Google Scholar 

  7. Buckwalter JA (2002) Articular cartilage injuries. Clin Orthop Relat Res 402:21–37

    Article  PubMed  Google Scholar 

  8. Buckwalter JA, Mankin HJ (1997) Instructional course lectures, The American Academy of Orthopaedic Surgeons—Articular Cartilage. Part II: degeneration and osteoarthrosis, repair, regeneration, and transplantation. J Bone Joint Surg Am 79:612–632

    Google Scholar 

  9. Buckwalter JA, Mankin HJ, Grodzinsky AJ (2005) Articular cartilage and osteoarthritis. Instr Course Lect 54:465–480

    PubMed  Google Scholar 

  10. Buckwalter JA, Martin JA, Olmstead M, Athanasiou KA, Rosenwasser MP, Mow VC (2003) Osteochondral repair of primate knee femoral and patellar articular surfaces: implications for preventing post-traumatic osteoarthritis. Iowa Orthop J 23:66–74

    PubMed  CAS  Google Scholar 

  11. Buda R, Vannini F, Cavallo M, Grigolo B, Cenacchi A, Giannini S (2010) Osteochondral lesions of the knee: a new one-step repair technique with bone-marrow-derived cells. J Bone Joint Surg Am 92(Suppl 2):2–11

    Article  PubMed  Google Scholar 

  12. Burmester GR, Feist E, Sleeman MA, Wang B, White B, Magrini F (2011) Mavrilimumab, a human monoclonal antibody targeting GM-CSF receptor-α, in subjects with rheumatoid arthritis: a randomised, double-blind, placebo-controlled, phase I, first-in-human study. Ann Rheum Dis 70:1542–1549

    Article  PubMed  CAS  Google Scholar 

  13. Buschmann MD, Gluzband YA, Grodzinsky AJ, Kimura JH, Hunziker EB (1992) Chondrocytes in agarose culture synthesize a mechanically functional extracellular matrix. J Orthop Res 10:745–758

    Article  PubMed  CAS  Google Scholar 

  14. Camussi G, Deregibus M-C, Bruno S, Grange C, Fonsato V, Tetta C (2011) Exosome/microvesicle-mediated epigenetic reprogramming of cells. Am J Cancer Res 1:98–110

    PubMed  Google Scholar 

  15. Choi SH, Park TG (2006) G-CSF loaded biodegradable PLGA nanoparticles prepared by a single oil-in-water emulsion method. Int J Pharm 311:223–228

    Article  PubMed  CAS  Google Scholar 

  16. Cole BJ, Farr J, Winalski CS, Hosea T, Richmond J, Mandelbaum B, De Deyne PG (2011) Outcomes after a single-stage procedure for cell-based cartilage repair: a prospective clinical safety trial with 2-year follow-up. Am J Sports Med 39:1170–1179

    Article  PubMed  Google Scholar 

  17. Cook AD, Braine EL, Campbell IK, Rich MJ, Hamilton JA (2001) Blockade of collagen-induced arthritis post-onset by antibody to granulocyte-macrophage colony-stimulating factor (GM-CSF): requirement for GM-CSF in the effector phase of disease. Arthritis Res 3:293–298

    Article  PubMed  CAS  Google Scholar 

  18. Cornish AL, Campbell IK, McKenzie BS, Chatfield S, Wicks IP (2009) G-CSF and GM-CSF as therapeutic targets in rheumatoid arthritis. Nat Rev Rheumatol 5:554–559

    Article  PubMed  CAS  Google Scholar 

  19. Dehne T, Karlsson C, Ringe J, Sittinger M, Lindahl A (2009) Chondrogenic differentiation potential of osteoarthritic chondrocytes and their possible use in matrix-associated autologous chondrocyte transplantation. Arthr Res Ther 11:R133

    Article  Google Scholar 

  20. Diaz-Romero J, Gaillard JP, Grogan SP, Nesic D, Trub T, Mainil-Varlet P (2005) Immunophenotypic analysis of human articular chondrocytes: changes in surface markers associated with cell expansion in monolayer culture. J Cell Physiol 202(3):731–742

    Article  PubMed  CAS  Google Scholar 

  21. Dowthwaite GP, Bishop JC, Redman SN, Khan IM, Rooney P, Evans DJR, Haughton L, Bayram Z, Boyer S, Thomson B, Wolfe MS, Archer CW (2004) The surface of articular cartilage contains a progenitor cell population. J Cell Sci 117:889–897

    Article  PubMed  CAS  Google Scholar 

  22. Eyles JL, Roberts AW, Metcalf D, Wicks IP (2006) Granulocyte colony-stimulating factor and neutrophils–forgotten mediators of inflammatory disease. Nat Clin Pract Rheumatol 2:500–510

    Article  PubMed  CAS  Google Scholar 

  23. Farr J, Cole B, Dhawan A, Kercher J, Sherman S (2011) Clinical cartilage restoration: evolution and overview. Clin Orthop Relat Res 469:2696–2705

    Article  PubMed  Google Scholar 

  24. Farr J, Cole BJ, Sherman S, Karas V (2012) Particulated articular cartilage: CAIS and DeNovo NT. J Knee Surg 25:23–29

    Article  PubMed  Google Scholar 

  25. Favreau AJ, Sathyanarayana P (2012) miR-590-5p, miR-219-5p, miR-15b and miR-628-5p are commonly regulated by IL-3, GM-CSF and G-CSF in acute myeloid leukemia. Leuk Res 36:334–341

    Article  PubMed  CAS  Google Scholar 

  26. Frisbie DD, Lu Y, Kawcak CE, DiCarlo EF, Binette F, McIlwraith CW (2009) In vivo evaluation of autologous cartilage fragment-loaded scaffolds implanted into equine articular defects and compared with autologous chondrocyte implantation. Am J Sports Med 37(Suppl 1):71S–80S

    Article  PubMed  Google Scholar 

  27. Giannini S, Buda R, Vannini F, Cavallo M, Grigolo B (2009) One-step bone marrow-derived cell transplantation in talar osteochondral lesions. Clin Orthop Relat Res 467:3307–3320

    Article  PubMed  Google Scholar 

  28. Giovannini S, Diaz-Romero J, Aigner T, Heini P, Mainil-Varlet P, Nesic D (2010) Micromass co-culture of human articular chondrocytes and human bone marrow mesenchymal stem cells to investigate stable neocartilage tissue formation in vitro. Eur Cell Mater 20:245–259

    PubMed  CAS  Google Scholar 

  29. Gouttenoire J, Valcourt U, Ronzière M-C, Aubert-Foucher E, Mallein-Gerin F, Herbage D (2004) Modulation of collagen synthesis in normal and osteoarthritic cartilage. Biorheology 41:535–542

    PubMed  CAS  Google Scholar 

  30. Ham O, Song B-W, Lee S-Y, Choi E, Cha M-J, Lee CY, Park J-H, Kim I-K, Chang W, Lim S, Lee CH, Kim S, Jang Y, Hwang K-C (2012) The role of microRNA-23b in the differentiation of MSC into chondrocyte by targeting protein kinase A signaling. Biomaterials 33:4500–4501

    Article  PubMed  CAS  Google Scholar 

  31. Hunziker EB (2002) Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthr Cartil 10:432–463

    Article  PubMed  CAS  Google Scholar 

  32. Ishida K, Matsumoto T, Sasaki K, Mifune Y, Tei K, Kubo S, Matsushita T, Takayama K, Akisue T, Tabata Y, Kurosaka M, Kuroda R (2010) Bone regeneration properties of granulocyte colony-stimulating factor via neovascularization and osteogenesis. Tissue Eng Part A 16:3271–3284

    Article  PubMed  CAS  Google Scholar 

  33. Johnson KA, Rose DM, Terkeltaub RA (2008) Factor XIIIA mobilizes transglutaminase 2 to induce chondrocyte hypertrophic differentiation. J Cell Sci 121:2256–2264

    Article  PubMed  CAS  Google Scholar 

  34. Katano M, Okamoto K, Arito M, Kawakami Y, Kurokawa MS, Suematsu N, Shimada S, Nakamura H, Xiang Y, Masuko K, Nishioka K, Yudoh K, Kato T (2009) Implication of granulocyte-macrophage colony-stimulating factor induced neutrophil gelatinase-associated lipocalin in pathogenesis of rheumatoid arthritis revealed by proteome analysis. Arthr Res Ther 11:R3

    Article  Google Scholar 

  35. Kaygusuz MA, Turan CC, Aydın NE, Temel İ, Fırat S, Bulut T, Kuku İ (2006) The effects of G-CSF and naproxen sodium on the serum TGF-β1 level and fracture healing in rat tibias. Life Sci 80:67–73

    Article  PubMed  CAS  Google Scholar 

  36. Klocke R, Kuhlmann MT, Scobioala S, Schäbitz W-R, Nikol S (2008) Granulocyte colony-stimulating factor (G-CSF) for cardio- and cerebrovascular regenerative applications. Curr Med Chem 15:968–977

    Article  PubMed  CAS  Google Scholar 

  37. Kokkonen H, Söderström I, Rocklöv J, Hallmans G, Lejon K, Rantapää Dahlqvist S (2010) Up-regulation of cytokines and chemokines predates the onset of rheumatoid arthritis. Arthr Rheum 62:383–391

    CAS  Google Scholar 

  38. Krinner E-M, Raum T, Petsch S, Bruckmaier S, Schuster I, Petersen L, Cierpka R, Abebe D, Mølhøj M, Wolf A, Sørensen P, Locher M, Baeuerle PA, Hepp J (2007) A human monoclonal IgG1 potently neutralizing the pro-inflammatory cytokine GM-CSF. Mol Immunol 44:916–925

    Article  PubMed  CAS  Google Scholar 

  39. Lawlor KE, Campbell IK, Metcalf D, O’Donnell K, van Nieuwenhuijze A, Roberts AW, Wicks IP (2004) Critical role for granulocyte colony-stimulating factor in inflammatory arthritis. Proc Natl Acad Sci USA 101:11398–11403

    Article  PubMed  CAS  Google Scholar 

  40. Lee MC, Goomer RS, Takahashi K, Harwood FL, Amiel M, Amiel D (2000) Transforming growth factor beta one (TGF-beta 1) enhancement of the chondrocytic phenotype in aged perichondrial cells: an in vitro study. Iowa Orthop J 20:11–16

    PubMed  CAS  Google Scholar 

  41. Lu Y, Dhanaraj S, Wang Z, Bradley DM, Bowman SM, Cole BJ, Binette F (2006) Minced cartilage without cell culture serves as an effective intraoperative cell source for cartilage repair. J Orthop Res 24:1261–1270

    Article  PubMed  Google Scholar 

  42. Marmotti A, Bruzzone M, Bonasia DE, Castoldi F, Rossi R, Piras L, Maiello A, Realmuto C, Peretti GM (2012) One-step osteochondral repair with cartilage fragments in a composite scaffold. Knee Surg Sports Traumatol Arthrosc. (Epub ahead of print) PubMed PMID: 22349601

  43. Martin JA, Buckwalter JA (2003) The role of chondrocyte senescence in the pathogenesis of osteoarthritis and in limiting cartilage repair. J Bone Joint Surg Am 85-A(Suppl 2):106–110

    PubMed  Google Scholar 

  44. Meyer PWA, Hodkinson B, Ally M, Musenge E, Wadee AA, Fickl H, Tikly M, Anderson R (2010) Circulating cytokine profiles and their relationships with autoantibodies, acute phase reactants, and disease activity in patients with rheumatoid arthritis. Mediat Inflamm 2010:158514

    Article  Google Scholar 

  45. Mithoefer K, McAdams TR, Scopp JM, Mandelbaum BR (2009) Emerging options for treatment of articular cartilage injury in the athlete. Clin Sports Med 28:25–40

    Article  PubMed  Google Scholar 

  46. Plater-Zyberk C, Joosten LAB, Helsen MMA, Hepp J, Baeuerle PA, van den Berg WB (2007) GM-CSF neutralisation suppresses inflammation and protects cartilage in acute streptococcal cell wall arthritis of mice. Ann Rheum Dis 66:452–457

    Article  PubMed  CAS  Google Scholar 

  47. Plater-Zyberk C, Joosten LAB, Helsen MMA, Koenders MI, Baeuerle PA, van den Berg WB (2009) Combined blockade of granulocyte-macrophage colony stimulating factor and interleukin 17 pathways potently suppresses chronic destructive arthritis in a tumour necrosis factor alpha-independent mouse model. Ann Rheum Dis 68:721–728

    Article  PubMed  CAS  Google Scholar 

  48. Quintero M, Colantuoni G, Khatib AM, Panasyuk A, Lomri A, Mitrovic DR (2001) Granulocyte-macrophage colony stimulating factor activates proteoglycan, type II collagen, and cAMP production by rat articular chondrocytes through specific binding sites. J Rheumatol 28:2075–2084

    PubMed  CAS  Google Scholar 

  49. Quintero M, Riera H, Colantuoni G, Khatib A-M, Attalah H, Moldovan F, Mitrovic DR, Lomri A (2008) Granulocyte-macrophage colony stimulating factor is anabolic and interleukin-1beta is catabolic for rat articular chondrocytes. Cytokine 44:366–372

    Article  PubMed  CAS  Google Scholar 

  50. Rudert M, Wirth CJ, Schulze M, Reiss G (1998) Synthesis of articular cartilage-like tissue in vitro. Arch Orthop Trauma Surg 117:141–146

    Article  PubMed  CAS  Google Scholar 

  51. Ryu J-H, Kim S-J, Kim S-H, Oh C-D, Hwang S-G, Chun C-H, Oh S-H, Seong J-K, Huh T-L, Chun J-S (2002) Regulation of the chondrocyte phenotype by beta-catenin. Development 129:5541–5550

    Article  PubMed  CAS  Google Scholar 

  52. Salvucci O, Jiang K, Gasperini P, Maric D, Zhu J, Sakakibara S, Espigol-Frigole G, Wang S, Tosato G (2012) MicroRNA126 contributes to G-CSF-induced hematopoietic progenitor cell mobilization by reducing VCAM-1 expression. Haematologica 97(6):818–826

    Article  PubMed  CAS  Google Scholar 

  53. Sandell LJ, Xing X, Franz C, Davies S, Chang L-W, Patra D (2008) Exuberant expression of chemokine genes by adult human articular chondrocytes in response to IL-1beta. Osteoarthr Cartil 16:1560–1571

    Article  PubMed  CAS  Google Scholar 

  54. Sasaki K, Kuroda R, Ishida K, Kubo S, Matsumoto T, Mifune Y, Kinoshita K, Tei K, Akisue T, Tabata Y, Kurosaka M (2008) Enhancement of tendon-bone osteointegration of anterior cruciate ligament graft using granulocyte colony-stimulating factor. Am J Sports Med 36:1519–1527

    Article  PubMed  Google Scholar 

  55. Saw K-Y, Anz A, Merican S, Tay Y-G, Ragavanaidu K, Jee CSY, McGuire DA (2011) Articular cartilage regeneration with autologous peripheral blood progenitor cells and hyaluronic acid after arthroscopic subchondral drilling: a report of 5 cases with histology. Arthroscopy 27:493–506

    Article  PubMed  Google Scholar 

  56. Schroeppel JP, Crist JD, Anderson HC, Wang J (2011) Molecular regulation of articular chondrocyte function and its significance in osteoarthritis. Histol Histopathol 26:377–394

    PubMed  CAS  Google Scholar 

  57. Sehgal PB, Mukhopadhyay S, Patel K, Xu F, Almodóvar S, Tuder RM, Flores SC (2009) Golgi dysfunction is a common feature in idiopathic human pulmonary hypertension and vascular lesions in SHIV-nef-infected macaques. Am J Physiol Lung Cell Mol Physiol 297:L729–L737

    Article  PubMed  CAS  Google Scholar 

  58. Singhrao SK, Gilbert SJ, Khan I, Duance VC, Archer CW (2008) TGFβ1 affects the biological responses of primary chondrocytes grown on poly(ethyleneterephthalate)/poly (ε-caprolactone) co-polymer flat scaffolds. Eur Cells Mater 16(Suppl. 3):91

    Google Scholar 

  59. Stephan S, Purcell WM, Chander CL (1999) Granulocyte-colony stimulating factor decreases glycosaminoglycan concentration and increases nitric oxide production in rat articular cartilage. Inflamm Res 48(Suppl 2):S126–S127

    Article  PubMed  CAS  Google Scholar 

  60. Stoop R, Albrecht D, Gaissmaier C, Fritz J, Felka T, Rudert M, Aicher WK (2007) Comparison of marker gene expression in chondrocytes from patients receiving autologous chondrocyte transplantation versus osteoarthritis patients. Arthr Res Ther 9:R60

    Article  Google Scholar 

  61. Strassburg S, Hodson NW, Hill PI, Richardson SM, Hoyland JA (2012) Bi-directional exchange of membrane components occurs during co-culture of mesenchymal stem cells and nucleus pulposus cells. PLoS ONE 7:e33739

    Article  PubMed  CAS  Google Scholar 

  62. Tallheden T, Bengtsson C, Brantsing C, Sjögren-Jansson E, Carlsson L, Peterson L, Brittberg M, Lindahl A (2005) Proliferation and differentiation potential of chondrocytes from osteoarthritic patients. Arthr Res Ther 7:R560–R568

    Article  CAS  Google Scholar 

  63. Tang XN, Berman AE, Swanson RA, Yenari MA (2010) Digitally quantifying cerebral hemorrhage using Photoshop and Image J. J Neurosci Methods 190:240–243

    Article  PubMed  Google Scholar 

  64. Tetta C, Bruno S, Fonsato V, Deregibus MC, Camussi G (2011) The role of microvesicles in tissue repair. Organogenesis 7:105–115

    Article  PubMed  Google Scholar 

  65. van Dijk CN, Reilingh ML, Zengerink M, van Bergen CJA (2010) The natural history of osteochondral lesions in the ankle. Instr Course Lect 59:375–386

    PubMed  Google Scholar 

  66. van Holten J, Reedquist K, Sattonet-Roche P, Smeets TJM, Plater-Zyberk C, Vervoordeldonk MJ, Tak PP (2004) Treatment with recombinant interferon-beta reduces inflammation and slows cartilage destruction in the collagen-induced arthritis model of rheumatoid arthritis. Arthr Res Ther 6:R239–R249

    Article  Google Scholar 

  67. Wang G, Yan Q, Woods A, Aubrey LA, Feng Q, Beier F (2011) Inducible nitric oxide synthase-nitric oxide signaling mediates the mitogenic activity of Rac1 during endochondral bone growth. J Cell Sci 124:3405–3413

    Article  PubMed  CAS  Google Scholar 

  68. Yannaki E, Athanasiou E, Xagorari A, Constantinou V, Batsis I, Kaloyannidis P, Proya E, Anagnostopoulos A, Fassas A (2005) G-CSF-primed hematopoietic stem cells or G-CSF per se accelerate recovery and improve survival after liver injury, predominantly by promoting endogenous repair programs. Exp Hematol 33:108–119

    Article  PubMed  CAS  Google Scholar 

  69. Yasuhara R, Ohta Y, Yuasa T, Kondo N, Hoang T, Addya S, Fortina P, Pacifici M, Iwamoto M, Enomoto-Iwamoto M (2011) Roles of β-catenin signaling in phenotypic expression and proliferation of articular cartilage superficial zone cells. Lab Invest 91:1739–1752

    Article  PubMed  CAS  Google Scholar 

  70. Yu C, Chen W-P, Wang X-H (2011) MicroRNA in osteoarthritis. J Int Med Res 39:1–9

    Article  PubMed  CAS  Google Scholar 

  71. Yuan W, Liu Z (2011) Surgical wound healing using hemostatic gauze scaffold loaded with nanoparticles containing sustained-release granulocyte colony-stimulating factor. Int J Nanomedicine 6:3139–3149

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by “DJ ESSKA Ortho Grant 2006” and “CRT (Cassa di Risparmio di Torino)—Alfieri project” (independent research fund). Authors are grateful to FAB (Fidia Advanced Biopolymers s.r.l.) for donation of Hyaff-11 membranes and to Sergio D’Antico, MD, and Paola Manzini, MD, for the help in the preparation of the human PRP. Authors are also grateful to Prof. Paolo Rossi for his precious help in the planning and fulfilment of the study and his continuous encouragement. Authors would also like to thank Radhika Srinivasan, PhD, for editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Marmotti.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marmotti, A., Bonasia, D.E., Bruzzone, M. et al. Human cartilage fragments in a composite scaffold for single-stage cartilage repair: an in vitro study of the chondrocyte migration and the influence of TGF-β1 and G-CSF. Knee Surg Sports Traumatol Arthrosc 21, 1819–1833 (2013). https://doi.org/10.1007/s00167-012-2244-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-012-2244-7

Keywords

Navigation