Skip to main content
Log in

Effect of open wedge high tibial osteotomy on the lateral compartment in sheep. Part I: analysis of the lateral meniscus

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

To evaluate whether medial open wedge high tibial osteotomy (HTO) results in structural and biochemical changes in the lateral meniscus in adult sheep.

Methods

Three experimental groups with biplanar osteotomies of the right proximal tibiae were tested: (a) closing wedge HTO resulting in 4.5° of tibial varus, (b) open wedge HTO resulting in 4.5° of tibial valgus (standard correction) and (c) open wedge HTO resulting in 9.5° of valgus (overcorrection), each of which was compared to the contralateral knees with normal limb axes. After 6 months, the lateral menisci were macroscopically and microscopically evaluated. The proteoglycan and DNA contents of the red–red and white–white zones of the anterior, middle and posterior third were determined.

Results

Semiquantitative macroscopic and microscopic grading revealed no structural differences between groups. The red–red zone of the middle third of the lateral menisci of animals that underwent overcorrection exhibited a significant 0.7-fold decrease in mean DNA contents compared with the control knee without HTO (P = 0.012). Comparative estimation of the DNA and proteoglycan contents and proteoglycan/DNA ratios of all other parts and zones of the lateral menisci did not reveal significant differences between groups.

Conclusion

Open wedge HTO does not lead to significant macroscopic and microscopic structural changes in the lateral meniscus after 6 months in vivo. Overcorrection significantly decreases the proliferative activity of the cells in the red–red zone of the middle third in the sheep model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Agneskirchner JD, Hurschler C, Wrann CD, Lobenhoffer P (2007) The effects of valgus medial opening wedge high tibial osteotomy on articular cartilage pressure of the knee: a biomechanical study. Arthroscopy 23(8):852–861

    Article  PubMed  Google Scholar 

  2. Baliunas AJ, Hurwitz DE, Ryals AB, Karrar A, Case JP, Block JA, Andriacchi TP (2002) Increased knee joint loads during walking are present in subjects with knee osteoarthritis. Osteoarthritis Cartilage 10(7):573–579

    Article  PubMed  CAS  Google Scholar 

  3. Beaufils P, Hardy P, Chambat P, Clavert P, Djian P, Frank A, Hulet C, Potel JF, Verdonk R (2006) Adult lateral meniscus. Rev Chir Orthop Reparatrice Appar Mot 92(5 Suppl):2S169–162S194

    Google Scholar 

  4. Bolano LE, Grana WA (1993) Isolated arthroscopic partial meniscectomy. Functional radiographic evaluation at five years. Am J Sports Med 21(3):432–437

    Article  PubMed  CAS  Google Scholar 

  5. Brinkman JM, Lobenhoffer P, Agneskirchner JD, Staubli AE, Wymenga AB, van Heerwaarden RJ (2008) Osteotomies around the knee: patient selection, stability of fixation and bone healing in high tibial osteotomies. J Bone Joint Surg Br 90(12):1548–1557

    Article  PubMed  Google Scholar 

  6. Bursac P, Arnoczky S, York A (2009) Dynamic compressive behavior of human meniscus correlates with its extra-cellular matrix composition. Biorheology 46(3):227–237

    PubMed  CAS  Google Scholar 

  7. Chevrier A, Nelea M, Hurtig MB, Hoemann CD, Buschmann MD (2009) Meniscus structure in human, sheep, and rabbit for animal models of meniscus repair. J Orthop Res 27(9):1197–1203

    Article  PubMed  Google Scholar 

  8. Cucchiarini M, Thurn T, Weimer A, Kohn D, Terwilliger EF, Madry H (2007) Restoration of the extracellular matrix in human osteoarthritic articular cartilage by overexpression of the transcription factor SOX9. Arthritis Rheum 56(1):158–167

    Article  PubMed  CAS  Google Scholar 

  9. Englund M, Guermazi A, Lohmander LS (2009) The meniscus in knee osteoarthritis. Rheum Dis Clin North Am 35(3):579–590

    Article  PubMed  Google Scholar 

  10. Englund M, Guermazi A, Lohmander SL (2009) The role of the meniscus in knee osteoarthritis: a cause or consequence? Radiol Clin North Am 47(4):703–712

    Article  PubMed  Google Scholar 

  11. Esparza R, Gortazar AR, Forriol F (2012) Cell study of the three areas of the meniscus: effect of growth factors in an experimental model in sheep. J Orthop Res. doi:10.1002/jor.22110

    PubMed  Google Scholar 

  12. Fithian DC, Kelly MA, Mow VC (1990) Material properties and structure-function relationships in the menisci. Clin Orthop Relat Res 252:19–31

    PubMed  Google Scholar 

  13. Fuller ES, Smith MM, Little CB, Melrose J (2012) Zonal differences in meniscus matrix turnover and cytokine response. Osteoarthritis Cartilage 20(1):49–59

    Article  PubMed  CAS  Google Scholar 

  14. Griffin TM, Guilak F (2005) The role of mechanical loading in the onset and progression of osteoarthritis. Exerc Sport Sci Rev 33(4):195–200

    Article  PubMed  Google Scholar 

  15. Heijink A, Gomoll AH, Madry H, Drobnic M, Filardo G, Espregueira-Mendes J, Van Dijk CN (2012) Biomechanical considerations in the pathogenesis of osteoarthritis of the knee. Knee Surg Sports Traumatol Arthrosc 20(3):423–435

    Article  PubMed  Google Scholar 

  16. Hennerbichler A, Moutos FT, Hennerbichler D, Weinberg JB, Guilak F (2007) Repair response of the inner and outer regions of the porcine meniscus in vitro. Am J Sports Med 35(5):754–762

    Article  PubMed  Google Scholar 

  17. Hoser C, Fink C, Brown C, Reichkendler M, Hackl W, Bartlett J (2001) Long-term results of arthroscopic partial lateral meniscectomy in knees without associated damage. J Bone Joint Surg Br 83(4):513–516

    Article  PubMed  CAS  Google Scholar 

  18. Imler SM, Doshi AN, Levenston ME (2004) Combined effects of growth factors and static mechanical compression on meniscus explant biosynthesis. Osteoarthritis Cartilage 12(9):736–744

    Article  PubMed  Google Scholar 

  19. Kambic HE, McDevitt CA (2005) Spatial organization of types I and II collagen in the canine meniscus. J Orthop Res 23(1):142–149

    Article  PubMed  CAS  Google Scholar 

  20. Kaul G, Cucchiarini M, Arntzen D, Zurakowski D, Menger MD, Kohn D, Trippel SB, Madry H (2006) Local stimulation of articular cartilage repair by transplantation of encapsulated chondrocytes overexpressing human fibroblast growth factor 2 (FGF-2) in vivo. J Gene Med 8(1):100–111

    Article  PubMed  CAS  Google Scholar 

  21. Kon E, Filardo G, Tschon M, Fini M, Giavaresi G, Marchesini Reggiani L, Chiari C, Nehrer S, Martin IP, Salter D, Ambrosio L, Marcacci M (2012) Tissue engineering for total meniscal substitution. Animal study in sheep model: results at 12 months. Tissue Eng Part A. doi:10.1089/ten.TEA.2011.0572

  22. Lee SJ, Aadalen KJ, Malaviya P, Lorenz EP, Hayden JK, Farr J, Kang RW, Cole BJ (2006) Tibiofemoral contact mechanics after serial medial meniscectomies in the human cadaveric knee. Am J Sports Med 34(8):1334–1344

    Article  PubMed  Google Scholar 

  23. Lohmander LS, Englund PM, Dahl LL, Roos EM (2007) The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis. Am J Sports Med 35(10):1756–1769

    Article  PubMed  Google Scholar 

  24. Macnicol MF, Thomas NP (2000) The knee after meniscectomy. J Bone Joint Surg Br 82(2):157–159

    Article  PubMed  CAS  Google Scholar 

  25. Madry H, Cucchiarini M, Stein U, Remberger K, Menger MD, Kohn D, Trippel SB (2003) Sustained transgene expression in cartilage defects in vivo after transplantation of articular chondrocytes modified by lipid-mediated gene transfer in a gel suspension delivery system. J Gene Med 5(6):502–509

    Article  PubMed  CAS  Google Scholar 

  26. Madry H, Kaul G, Cucchiarini M, Stein U, Zurakowski D, Remberger K, Menger MD, Kohn D, Trippel SB (2005) Enhanced repair of articular cartilage defects in vivo by transplanted chondrocytes overexpressing insulin-like growth factor I (IGF-I). Gene Ther 12(15):1171–1179

    Article  PubMed  CAS  Google Scholar 

  27. Madry H, Luyten FP, Facchini A (2012) Biological aspects of early osteoarthritis. Knee Surg Sports Traumatol Arthrosc 20(3):407–422

    Article  PubMed  Google Scholar 

  28. Madry H, van Dijk CN, Mueller-Gerbl M (2010) The basic science of the subchondral bone. Knee Surg Sports Traumatol Arthrosc 18(4):419–433

    Article  PubMed  Google Scholar 

  29. Madry H, Zurakowski D, Trippel SB (2001) Overexpression of human insulin-like growth factor-I promotes new tissue formation in an ex vivo model of articular chondrocyte transplantation. Gene Ther 8(19):1443–1449

    Article  PubMed  CAS  Google Scholar 

  30. Mauck RL, Martinez-Diaz GJ, Yuan X, Tuan RS (2007) Regional multilineage differentiation potential of meniscal fibrochondrocytes: implications for meniscus repair. Anat Rec 290(1):48–58

    Article  CAS  Google Scholar 

  31. McDermott ID, Amis AA (2006) The consequences of meniscectomy. J Bone Joint Surg Br 88(12):1549–1556

    Article  PubMed  CAS  Google Scholar 

  32. Muller-Gerbl M, Putz R, Kenn R (1992) Demonstration of subchondral bone density patterns by three-dimensional CT osteoabsorptiometry as a noninvasive method for in vivo assessment of individual long-term stresses in joints. J Bone Miner Res 7(Suppl 2):S411–S418

    Article  PubMed  Google Scholar 

  33. Nishimuta JF, Levenston ME (2012) Response of cartilage and meniscus tissue explants to in vitro compressive overload. Osteoarthritis Cartilage 20(5):422–429

    Article  PubMed  CAS  Google Scholar 

  34. Orth P, Zurakowski D, Wincheringer D, Madry H (2011) Reliability, reproducibility and validation of five major histological scoring systems for experimental articular cartilage repair in the rabbit model. Tissue Eng Part C Methods 18(5):329–339

    Article  PubMed  Google Scholar 

  35. Otsuki S, Nakajima M, Lotz M, Kinoshita M (2008) Hyaluronic acid and chondroitin sulfate content of osteoarthritic human knee cartilage: site-specific correlation with weight-bearing force based on femorotibial angle measurement. J Orthop Res 26(9):1194–1198

    Article  PubMed  Google Scholar 

  36. Paley D, Pfeil J (2000) Principles of deformity correction around the knee. Orthopade 29(1):18–38

    PubMed  CAS  Google Scholar 

  37. Pape D, Dueck K, Haag M, Lorbach O, Seil R, Madry H (2012) Wedge volume and osteotomy surface depend on surgical technique for high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-012-1913-x

    Google Scholar 

  38. Pape D, Filardo G, Kon E, van Dijk CN, Madry H (2010) Disease-specific clinical problems associated with the subchondral bone. Knee Surg Sports Traumatol Arthrosc 18(4):448–462

    Article  PubMed  Google Scholar 

  39. Pape D, Madry H (2012) The preclinical sheep model of high tibial osteotomy relating basic science to the clinics: standards, techniques and pitfalls. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-012-2135

    Google Scholar 

  40. Pauli C, Grogan SP, Patil S, Otsuki S, Hasegawa A, Koziol J, Lotz MK, D’Lima DD (2011) Macroscopic and histopathologic analysis of human knee menisci in aging and osteoarthritis. Osteoarthritis Cartilage 19(9):1132–1141

    Article  PubMed  CAS  Google Scholar 

  41. Pena E, Calvo B, Martinez MA, Palanca D, Doblare M (2006) Why lateral meniscectomy is more dangerous than medial meniscectomy. A finite element study. J Orthop Res 24(5):1001–1010

    Article  PubMed  Google Scholar 

  42. Proffen BL, McElfresh M, Fleming BC, Murray MM (2011) A comparative anatomical study of the human knee and six animal species. Knee 19(4):493–499

    Article  PubMed  Google Scholar 

  43. Scheller G, Sobau C, Bulow JU (2001) Arthroscopic partial lateral meniscectomy in an otherwise normal knee: clinical, functional, and radiographic results of a long-term follow-up study. Arthroscopy 17(9):946–952

    Article  PubMed  CAS  Google Scholar 

  44. Sterett WI, Steadman JR (2004) Chondral resurfacing and high tibial osteotomy in the varus knee. Am J Sports Med 32(5):1243–1249

    Article  PubMed  Google Scholar 

  45. Tanamas S, Hanna FS, Cicuttini FM, Wluka AE, Berry P, Urquhart DM (2009) Does knee malalignment increase the risk of development and progression of knee osteoarthritis? A systematic review. Arthritis Rheum 61(4):459–467

    Article  PubMed  Google Scholar 

  46. Tetsworth K, Paley D (1994) Malalignment and degenerative arthropathy. Orthop Clin North Am 25(3):367–377

    PubMed  CAS  Google Scholar 

  47. Upton ML, Chen J, Guilak F, Setton LA (2003) Differential effects of static and dynamic compression on meniscal cell gene expression. J Orthop Res 21(6):963–969

    Article  PubMed  CAS  Google Scholar 

  48. Upton ML, Chen J, Setton LA (2006) Region-specific constitutive gene expression in the adult porcine meniscus. J Orthop Res 24(7):1562–1570

    Article  PubMed  CAS  Google Scholar 

  49. Upton ML, Guilak F, Laursen TA, Setton LA (2006) Finite element modeling predictions of region-specific cell-matrix mechanics in the meniscus. Biomech Model Mechanobiol 5(2–3):140–149

    Article  PubMed  Google Scholar 

  50. Van Thiel GS, Frank RM, Gupta A, Ghodadra N, Shewman EF, Wang VM, Bach BR, Verma NN, Cole BJ, Provencher MT (2011) Biomechanical evaluation of a high tibial osteotomy with a meniscal transplant. J Knee Surg 24(1):45–53

    Article  PubMed  Google Scholar 

  51. Verdonk R (2010) The meniscus: past, present and future. Knee Surg Sports Traumatol Arthrosc 19(2):145–146

    Article  Google Scholar 

  52. W-Dahl A, Robertsson O, Lohmander LS (2012) High tibial osteotomy in Sweden, 1998–2007. Acta Orthop. 83(3):244–248

    Article  PubMed  Google Scholar 

  53. Wei L, Hjerpe A, Brismar BH, Svensson O (2001) Effect of load on articular cartilage matrix and the development of guinea-pig osteoarthritis. Osteoarthritis Cartilage 9(5):447–453

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are indebted to Dr. vet. Altmann and her team, Bad Langensalza, Thuringia, Germany, for their excellent support in the treatment and care of the animals. This study was supported in part by an AGA Research Grant (Forschungsförderung 29/2008) to HM and DP and by a grant of the Department of Orthopaedic Surgery, Saarland University, Homburg/Saar. Henning Madry, Patrick Orth, Dieter Kohn, Magali Cucchiarini and Dietrich Pape are partners in the Cartilage Net of the Universität der Großregion/Université de la Grande Région (UGR), supported by the INTERREG IV Programme of the European Union.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henning Madry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madry, H., Ziegler, R., Orth, P. et al. Effect of open wedge high tibial osteotomy on the lateral compartment in sheep. Part I: analysis of the lateral meniscus. Knee Surg Sports Traumatol Arthrosc 21, 39–48 (2013). https://doi.org/10.1007/s00167-012-2176-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-012-2176-2

Keywords

Navigation