Skip to main content
Log in

Bone marrow-derived cell mobilization by G-CSF to enhance osseointegration of bone substitute in high tibial osteotomy

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

To evaluate granulocyte colony-stimulating factor (G-CSF) efficacy in accelerating bone regeneration following opening-wedge high tibial valgus osteotomy for genu varum.

Methods

A phase II trial was conducted for evaluating the preoperative administration of G-CSF given at 10 μg/kg/day for 3 consecutive days with an additional half-dose 4 h before the opening-wedge high tibial valgus osteotomy. Overall, 12 patients (Group A) received G-CSF treatment, and the subsequent 12 patients (Group B) underwent surgery without G-CSF. The osteotomy gap was filled by a bone graft substitute. Bone marrow cell (BMC) mobilization was monitored by CD34+ve cell and clonogenic progenitor cell analysis. All patients underwent a clinical (Lysholm Knee Scale and SF-36) and radiographic evaluation preoperatively, as well as at given intervals postsurgery.

Results

All patients completed the treatment program without major side effects; G-CSF was well tolerated. BMC mobilization occurred in all Group A patients, with median peak values of circulating CD34+ve cells of 110/μL (range 29–256). Circulating clonogenic progenitors paralleled CD34+ve cell levels. A significant improvement in Lysholm Knee Scale was recorded at follow-up in Group A compared to Group B. At the radiographic evaluation, there was a significant increase in osseointegration at the bone-graft junction in Group A at 1, 2, 3 and 6 months postsurgery compared to Group B. The computerized tomography scan of the grafted area at 2 months postsurgery showed no significant difference in the quality of the newly formed bone between the two Groups.

Conclusions

Although the limited number of patients does not allow firm conclusions, the study suggests that G-CSF can be safely administered preoperatively in subjects undergoing opening-wedge high tibial valgus osteotomy; in addition, the clinical, radiographic and CT monitoring indicate that G-CSF and/or mobilized BMCs may hasten bone graft substitute osseointegration.

Level of evidence

I.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aalderink KJ, Shaffer M, Amendola A (2010) Rehabilitation following high tibial osteotomy. Clin Sports Med 29:291–301

    Article  PubMed  Google Scholar 

  2. Anderlini P (2009) Effects and safety of granulocyte colony-stimulating factor in healthy volunteers. Curr Opin Hematol 16:35–40

    Article  PubMed  CAS  Google Scholar 

  3. Anderlini P, Champlin RE (2008) Biologic and molecular effects of granulocyte colony-stimulating factor in healthy individuals: recent findings and current challenges. Blood 111:1767–1772

    Article  PubMed  CAS  Google Scholar 

  4. Baldo MP, Davel APC, Damas-Souza DM, Nicoletti-Carvalho JE, Bordin S, Carvalho HF, Rodrigues SL, Rossoni LV, Mill JG (2011) The antiapoptotic effect of granulocyte colony-stimulating factor reduces infarct size and prevents heart failure development in rats. Cell Physiol Biochem 28:33–40

    Article  PubMed  CAS  Google Scholar 

  5. Bozlar M, Aslan B, Kalaci A, Baktiroglu L, Yanat AN, Tasci A (2005) Effects of human granulocyte-colony stimulating factor on fracture healing in rats. Saudi Med J 26:1250–1254

    PubMed  Google Scholar 

  6. Brouard N, Driessen R, Short B, Simmons PJ (2010) G-CSF increases mesenchymal precursor cell numbers in the bone marrow via an indirect mechanism involving osteoclast-mediated bone resorption. Stem Cell Res 5:65–75

    Article  PubMed  CAS  Google Scholar 

  7. Cesselli D, Beltrami AP, Rigo S, Bergamin N, D’Aurizio F, Verardo R, Piazza S, Klaric E, Fanin R, Toffoletto B, Marzinotto S, Mariuzzi L, Finato N, Pandolfi M, Leri A, Schneider C, Beltrami CA, Anversa P (2009) Multipotent progenitor cells are present in human peripheral blood. Circ Res 104:1225–1234

    Article  PubMed  CAS  Google Scholar 

  8. Chen JL, Hunt P, McElvain M, Black T, Kaufman S, Choi ES (1997) Osteoblast precursor cells are found in CD34+ cells from human bone marrow. Stem Cells 15:368–377

    Article  PubMed  CAS  Google Scholar 

  9. Chen Y, Jiang X, Gong J (2008) Recombinant human granulocyte colony-stimulating factor enhanced the resolution of venous thrombi. J Vasc Surg 47:1058–1065

    Article  PubMed  Google Scholar 

  10. Chiò A, Mora G, La Bella V, Caponnetto C, Mancardi G, Sabatelli M, Siciliano G, Silani V, Corbo M, Moglia C, Calvo A, Mutani R, Rutella S, Gualandi F, Melazzini M, Scimè R, Petrini M, Bondesan P, Garbelli S, Mantovani S, Bendotti C, Tarella C (2011) Repeated courses of granulocyte colony-stimulating factor in amyotrophic lateral sclerosis: clinical and biological results from a prospective multicenter study. Muscle Nerve 43:189–195

    Article  PubMed  Google Scholar 

  11. Cho S-W, Lim JE, Chu HS, Hyun H-J, Choi CY, Hwang K-C, Yoo KJ, Kim D-I, Kim B-S (2006) Enhancement of in vivo endothelialization of tissue-engineered vascular grafts by granulocyte colony-stimulating factor. J Biomed Mater Res A 76:252–263

    PubMed  Google Scholar 

  12. Dallari D, Savarino L, Stagni C, Cenni E, Cenacchi A, Fornasari PM, Albisinni U, Rimondi E, Baldini N, Giunti A (2007) Enhanced tibial osteotomy healing with use of bone grafts supplemented with platelet gel or platelet gel and bone marrow stromal cells. J Bone Joint Surg Am 89:2413–2420

    Article  PubMed  CAS  Google Scholar 

  13. Ekmekçi OB, Oztürk G, Ekmekçi H, Atay D, Yanaşik M, Anak S, Devecioğlu O (2009) Effects of rhG-CSF plus dexamethasone on hemostatic parameters in healthy granulocyte donors: role of u-PA and nitric oxide. Clin Appl Thromb Hemost 15:689–694

    Article  PubMed  Google Scholar 

  14. Gaia S, Smedile A, Omedè P, Olivero A, Sanavio F, Balzola F, Ottobrelli A, Abate ML, Marzano A, Rizzetto M, Tarella C (2006) Feasibility and safety of G-CSF administration to induce bone marrow-derived cells mobilization in patients with end stage liver disease. J Hepatol 45:13–19

    Article  PubMed  CAS  Google Scholar 

  15. Gangji V, Hauzeur J-P, Matos C, De Maertelaer V, Toungouz M, Lambermont M (2004) Treatment of osteonecrosis of the femoral head with implantation of autologous bone-marrow cells. A pilot study. J Bone Joint Surg Am 86-A:1153–1160

    PubMed  Google Scholar 

  16. Garg V, Garg H, Khan A, Trehanpati N, Kumar A, Sharma BC, Sakhuja P, Sarin SK (2012) Granulocyte colony-stimulating factor mobilizes CD34(+) cells and improves survival of patients with acute-on-chronic liver failure. Gastroenterology 142(3):505–512.e1

    Google Scholar 

  17. Haas R, Murea S (1995) The role of granulocyte colony-stimulating factor in mobilization and transplantation of peripheral blood progenitor and stem cells. Cytokines Mol Ther 1:249–270

    PubMed  CAS  Google Scholar 

  18. Hack M, Mascha FG, Jobst BJ, Riegger GAJ, Griese DP (2008) A systemic combination therapy with granulocyte-colony stimulating factor plus erythropoietin aggravates the healing process of balloon-injured rat carotid arteries. Cardiovasc Drugs Ther 22:351–362

    Article  PubMed  CAS  Google Scholar 

  19. Halter J, Kodera Y, Ispizua AU, Greinix HT, Schmitz N, Favre G, Baldomero H, Niederwieser D, Apperley JF, Gratwohl A (2009) Severe events in donors after allogeneic hematopoietic stem cell donation. Haematologica 94:94–101

    Article  PubMed  Google Scholar 

  20. Hannoush EJ, Sifri ZC, Elhassan IO, Mohr AM, Alzate WD, Offin M, Livingston DH (2011) Impact of enhanced mobilization of bone marrow derived cells to site of injury. J Trauma 71:283–291

    Article  PubMed  Google Scholar 

  21. Hartmann O, Le Corroller AG, Blaise D, Michon J, Philip I, Norol F, Janvier M, Pico JL, Baranzelli MC, Rubie H, Coze C, Pinna A, Méresse V, Benhamou E (1997) Peripheral blood stem cell and bone marrow transplantation for solid tumors and lymphomas: hematologic recovery and costs. A randomized, controlled trial. Ann Intern Med 126:600–607

    PubMed  CAS  Google Scholar 

  22. Hernigou P, Mathieu G, Poignard A, Manicom O, Beaujean F, Rouard H (2006) Percutaneous autologous bone-marrow grafting for nonunions. Surgical technique. J Bone Joint Surg Am 88(Suppl 1 Pt 2):322–327

    PubMed  Google Scholar 

  23. Ince H, Valgimigli M, Petzsch M, de Lezo JS, Kuethe F, Dunkelmann S, Biondi-Zoccai G, Nienaber CA (2008) Cardiovascular events and re-stenosis following administration of G-CSF in acute myocardial infarction: systematic review and meta-analysis. Heart 94:610–616

    Article  PubMed  CAS  Google Scholar 

  24. Ishida K, Matsumoto T, Sasaki K, Mifune Y, Tei K, Kubo S, Matsushita T, Takayama K, Akisue T, Tabata Y, Kurosaka M, Kuroda R (2010) Bone regeneration properties of granulocyte colony-stimulating factor via neovascularization and osteogenesis. Tissue Eng Part A 16:3271–3284

    Article  PubMed  CAS  Google Scholar 

  25. Jäger M, Jelinek EM, Wess KM, Scharfstädt A, Jacobson M, Kevy SV, Krauspe R (2009) Bone marrow concentrate: a novel strategy for bone defect treatment. Curr Stem Cell Res Ther 4:34–43

    Article  PubMed  Google Scholar 

  26. Kaptan K, Ifran A, Beyan C, Sertkaya D (2007) Recombinant human granulocyte colony-stimulating factor (rhG-CSF) promotes in vitro platelet aggregation. Hematology 12:441–444

    Article  PubMed  CAS  Google Scholar 

  27. Kassis I, Zangi L, Rivkin R, Levdansky L, Samuel S, Marx G, Gorodetsky R (2006) Isolation of mesenchymal stem cells from G-CSF-mobilized human peripheral blood using fibrin microbeads. Bone Marrow Transplant 37:967–976

    Article  PubMed  CAS  Google Scholar 

  28. Kastrup J, Ripa RS, Wang Y, Jørgensen E (2006) Myocardial regeneration induced by granulocyte-colony-stimulating factor mobilization of stem cells in patients with acute or chronic ischaemic heart disease: a non-invasive alternative for clinical stem cell therapy? Eur Heart J 27:2748–2754

    Article  PubMed  CAS  Google Scholar 

  29. Kaygusuz MA, Turan CC, Aydin NE, Temel I, Firat S, Bulut T, Kuku I (2006) The effects of G-CSF and naproxen sodium on the serum TGF-beta1 level and fracture healing in rat tibias. Life Sci 80:67–73

    Article  PubMed  CAS  Google Scholar 

  30. Klocke R, Kuhlmann MT, Scobioala S, Schäbitz W-R, Nikol S (2008) Granulocyte colony-stimulating factor (G-CSF) for cardio- and cerebrovascular regenerative applications. Curr Med Chem 15:968–977

    Article  PubMed  CAS  Google Scholar 

  31. Kocher MS, Steadman JR, Briggs KK, Sterett WI, Hawkins RJ (2004) Reliability, validity, and responsiveness of the Lysholm knee scale for various chondral disorders of the knee. J Bone Joint Surg Am 86-A:1139–1145

    PubMed  Google Scholar 

  32. Kuroda R, Matsumoto T, Miwa M, Kawamoto A, Mifune Y, Fukui T, Kawakami Y, Niikura T, Lee SY, Oe K, Shoji T, Kuroda T, Horii M, Yokoyama A, Ono T, Koibuchi Y, Kawamata S, Fukushima M, Kurosaka M, Asahara T (2010) Local transplantation of G-CSF-mobilized CD34+cells in a patient with tibial nonunion: a case report. Cell Transplant

  33. Lian WS, Lin H, Cheng WT, Kikuchi T, Cheng CF (2011) Granulocyte-CSF induced inflammation-associated cardiac thrombosis in iron loading mouse heart and can be attenuated by statin therapy. J Biomed Sci 18:26

    Article  PubMed  CAS  Google Scholar 

  34. Liongue C, Wright C, Russell AP, Ward AC (2009) Granulocyte colony-stimulating factor receptor: stimulating granulopoiesis and much more. Int J Biochem Cell Biol 41:2372–2375

    Article  PubMed  CAS  Google Scholar 

  35. Marcacci M, Kon E, Moukhachev V, Lavroukov A, Kutepov S, Quarto R, Mastrogiacomo M, Cancedda R (2007) Stem cells associated with macroporous bioceramics for long bone repair: 6- to 7-year outcome of a pilot clinical study. Tissue Eng 13:947–955

    Article  PubMed  CAS  Google Scholar 

  36. Marenco S, Bellato E, Marini E, Mortera S, Castoldi F, Borré A, Castellano S, La Russa M, Marmotti A, Cottino U (2011) The role of CT and DEXA in the evaluation of biomaterial HATriC graft osseointegration in high tibial osteotomy. Minerva Ortopedica e Traumatologica Agosto 62(4):45–239

    Google Scholar 

  37. Martino M, Luise F, Oriana V, Console G, Moscato T, Mammì C, Messina G, Massara E, Irrera G, Piromalli A, Lombardo VT, Laganà C, Iacopino P (2007) Utility of the clinical practice of administering thrombophilic screening and antithrombotic prophylaxis with low-molecular-weight heparin to healthy donors treated with G-CSF for mobilization of peripheral blood stem cells. Tumori 93:155–159

    PubMed  CAS  Google Scholar 

  38. Matsumoto T, Kawamoto A, Kuroda R, Ishikawa M, Mifune Y, Iwasaki H, Miwa M, Horii M, Hayashi S, Oyamada A, Nishimura H, Murasawa S, Doita M, Kurosaka M, Asahara T (2006) Therapeutic potential of vasculogenesis and osteogenesis promoted by peripheral blood CD34-positive cells for functional bone healing. Am J Pathol 169:1440–1457

    Article  PubMed  CAS  Google Scholar 

  39. Mifune Y, Matsumoto T, Kawamoto A, Kuroda R, Shoji T, Iwasaki H, Kwon S-M, Miwa M, Kurosaka M, Asahara T (2008) Local delivery of granulocyte colony stimulating factor-mobilized CD34-positive progenitor cells using bioscaffold for modality of unhealing bone fracture. Stem Cells 26:1395–1405

    Article  PubMed  CAS  Google Scholar 

  40. Moioli EK, Clark PA, Chen M, Dennis JE, Erickson HP, Gerson SL, Mao JJ (2008) Synergistic actions of hematopoietic and mesenchymal stem/progenitor cells in vascularizing bioengineered tissues. PLoS One 3:e3922

    Article  PubMed  Google Scholar 

  41. Naina HV, Pruthi RK, Inwards DJ, Dingli D, Litzow MR, Ansell SM, William HJ, Dispenzieri A, Buadi FK, Elliott MA, Gastineau DA, Gertz MA, Hayman SR, Johnston PB, Lacy MQ, Micallef IN, Porrata LF, Kumar S (2011) Low risk of symptomatic venous thromboembolic events during growth factor administration for PBSC mobilization. Bone Marrow Transplant 46:291–293

    Article  PubMed  CAS  Google Scholar 

  42. Pulsipher MA, Chitphakdithai P, Miller JP, Logan BR, King RJ, Rizzo JD, Leitman SF, Anderlini P, Haagenson MD, Kurian S, Klein JP, Horowitz MM, Confer DL (2009) Adverse events among 2408 unrelated donors of peripheral blood stem cells: results of a prospective trial from the national marrow donor program. Blood 113:3604–3611

    Article  PubMed  CAS  Google Scholar 

  43. Quillen K, Byrne P, Yau YY, Leitman SF (2009) Ten-year follow-up of unrelated volunteer granulocyte donors who have received multiple cycles of granulocyte-colony-stimulating factor and dexamethasone. Transfusion 49:513–518

    Article  PubMed  Google Scholar 

  44. Sasaki K, Kuroda R, Ishida K, Kubo S, Matsumoto T, Mifune Y, Kinoshita K, Tei K, Akisue T, Tabata Y, Kurosaka M (2008) Enhancement of tendon-bone osteointegration of anterior cruciate ligament graft using granulocyte colony-stimulating factor. Am J Sports Med 36:1519–1527

    Article  PubMed  Google Scholar 

  45. Schmitz N, Linch DC, Dreger P, Goldstone AH, Boogaerts MA, Ferrant A, Demuynck HM, Link H, Zander A, Barge A (1996) Randomised trial of filgrastim-mobilised peripheral blood progenitor cell transplantation versus autologous bone-marrow transplantation in lymphoma patients. Lancet 347:353–357

    Article  PubMed  CAS  Google Scholar 

  46. Schreiber JJ, Anderson PA, Rosas HG, Buchholz AL, Au AG (2011) Hounsfield units for assessing bone mineral density and strength: a tool for osteoporosis management. J Bone Joint Surg Am 93:1057–1063

    Article  PubMed  Google Scholar 

  47. Sheridan WP, Begley CG, Juttner CA, Szer J, To LB, Maher D, McGrath KM, Morstyn G, Fox RM (1992) Effect of peripheral-blood progenitor cells mobilised by filgrastim (G-CSF) on platelet recovery after high-dose chemotherapy. Lancet 339:640–644

    Article  PubMed  CAS  Google Scholar 

  48. Solaroglu I, Cahill J, Tsubokawa T, Beskonakli E, Zhang JH (2009) Granulocyte colony-stimulating factor protects the brain against experimental stroke via inhibition of apoptosis and inflammation. Neurol Res 31:167–172

    Article  PubMed  CAS  Google Scholar 

  49. Solaroglu I, Jadhav V, Zhang JH (2007) Neuroprotective effect of granulocyte-colony stimulating factor. Front Biosci 12:712–724

    Article  PubMed  CAS  Google Scholar 

  50. Spiel AO, Bartko J, Schwameis M, Firbas C, Siller-Matula J, Schuetz M, Weigl M, Jilma B (2011) Increased platelet aggregation and in vivo platelet activation after granulocyte colony-stimulating factor administration. A randomised controlled trial. Thromb Haemost 105:655–662

    Article  PubMed  CAS  Google Scholar 

  51. Spiel AO, Siller-Matula J, Firbas C, Leitner JM, Russmueller G, Jilma B (2010) Single dose granulocyte colony-stimulating factor markedly enhances shear-dependent platelet function in humans. Platelets 21:464–469

    Article  PubMed  CAS  Google Scholar 

  52. Takano H, Ohtsuka M, Akazawa H, Toko H, Harada M, Hasegawa H, Nagai T, Komuro I (2003) Pleiotropic effects of cytokines on acute myocardial infarction: G-CSF as a novel therapy for acute myocardial infarction. Curr Pharm Des 9:1121–1127

    Article  PubMed  CAS  Google Scholar 

  53. Tarella C, Rutella S, Gualandi F, Melazzini M, Scimè R, Petrini M, Moglia C, Ulla M, Omedé P, Bella VL, Corbo M, Silani V, Siciliano G, Mora G, Caponnetto C, Sabatelli M, Chiò A (2010) Consistent bone marrow-derived cell mobilization following repeated short courses of granulocyte-colony-stimulating factor in patients with amyotrophic lateral sclerosis: results from a multicenter prospective trial. Cytotherapy 12:50–59

    Article  PubMed  CAS  Google Scholar 

  54. Tatsumi K, Otani H, Sato D, Enoki C, Iwasaka T, Imamura H, Taniuchi S, Kaneko K, Adachi Y, Ikehara S (2008) Granulocyte-colony stimulating factor increases donor mesenchymal stem cells in bone marrow and their mobilization into peripheral circulation but does not repair dystrophic heart after bone marrow transplantation. Circ J 72:1351–1358

    Article  PubMed  Google Scholar 

  55. Terayama H, Ishikawa M, Yasunaga Y, Yamasaki T, Hamaki T, Asahara T, Ochi M (2011) Prevention of osteonecrosis by intravenous administration of human peripheral blood-derived CD34-positive cells in a rat osteonecrosis model. J Tissue Eng Regen Med 5(1):32–40

    Google Scholar 

  56. Tigue CC, McKoy JM, Evens AM, Trifilio SM, Tallman MS, Bennett CL (2007) Granulocyte-colony stimulating factor administration to healthy individuals and persons with chronic neutropenia or cancer: an overview of safety considerations from the research on adverse drug events and reports project. Bone Marrow Transplant 40:185–192

    Article  PubMed  CAS  Google Scholar 

  57. Tondreau T, Meuleman N, Delforge A, Dejeneffe M, Leroy R, Massy M, Mortier C, Bron D, Lagneaux L (2005) Mesenchymal stem cells derived from CD133-positive cells in mobilized peripheral blood and cord blood: proliferation, Oct 4 expression, and plasticity. Stem Cells 23:1105–1112

    Article  PubMed  CAS  Google Scholar 

  58. Ware JE Jr, Sherbourne CD (1992) The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care 30:473–483

    Article  PubMed  Google Scholar 

  59. Wu X, Yang S, Duan D, Liu X, Zhang Y, Wang J, Yang C, Jiang S (2008) A combination of granulocyte colony-stimulating factor and stem cell factor ameliorates steroid-associated osteonecrosis in rabbits. J Rheumatol 35:2241–2248

    Article  PubMed  CAS  Google Scholar 

  60. Wu Y-D, Chien C-H, Chao YJ, Hamrick MW, Hill WD, Yu JC, Li X (2008) Granulocyte colony-stimulating factor administration alters femoral biomechanical properties in C57BL/6 mice. J Biomed Mater Res A 87:972–979

    PubMed  Google Scholar 

  61. Yannaki E, Athanasiou E, Xagorari A, Constantinou V, Batsis I, Kaloyannidis P, Proya E, Anagnostopoulos A, Fassas A (2005) G-CSF-primed hematopoietic stem cells or G-CSF per se accelerate recovery and improve survival after liver injury, predominantly by promoting endogenous repair programs. Exp Hematol 33:108–119

    Article  PubMed  CAS  Google Scholar 

  62. Zhang Y, Wang L, Fu Y, Song H, Zhao H, Deng M, Zhang J, Fan D (2009) Preliminary investigation of effect of granulocyte colony stimulating factor on amyotrophic lateral sclerosis. Amyotroph Lateral Scler 10:430–431

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Authors are grateful to Prof. Paolo Rossi for his precious help in the planning and fulfilment of the study program and his continuous encouragement during the data collection and analysis. This work was supported in part by grants from the Ministero Italiano Università e Ricerca (MIUR) (PRIN 2006), Rome, Italy and by Regione Piemonte (Ricerca Sanitaria Finalizzata and Ricerca Scientifica Applicata), Torino. AR is supported with a grant from PiSTEM Project-Regione Piemonte. The laboratory assays on stem/progenitor cell mobilization have been performed at the Hematology laboratory of the Molecular Biotechnology Center (MBC) in Torino. G-CSF (Myelostim®) was kindly provided free of charge by Italfarmaco, Milano, Italy. The authors would also like to thank Prof. Paolo Provero, for the assistance in the statistics, and Radhika Srinivasan, PhD, for editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Marmotti.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 70 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marmotti, A., Castoldi, F., Rossi, R. et al. Bone marrow-derived cell mobilization by G-CSF to enhance osseointegration of bone substitute in high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc 21, 237–248 (2013). https://doi.org/10.1007/s00167-012-2150-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-012-2150-z

Keywords

Navigation