Skip to main content
Log in

Effect of genu recurvatum on the anterior cruciate ligament-deficient knee during gait

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

This study aimed to investigate the effects of genu recurvatum, which is considered to carry a high risk for anterior cruciate ligament (ACL) injury, on healthy and post-ACL injury gait and lower extremity muscle strength.

Methods

Subjects were 36 patients with ACL-deficient knee and 40 healthy controls without pain or restricted range of motion of the lower extremity during gait. The knee joints of all subjects were examined; those with over 10° hyperextension of both knees were defined as exhibiting genu recurvatum. On this basis, the subjects were further subdivided into two groups: with or without genu recurvatum. A three-dimensional motion analysis system and force plates were used for gait analysis. Isokinetic dynamometers were used to measure knee muscle strength.

Results

There were no differences in joint angles, joint moments, or components of ground reaction force during gait or in knee strength for the healthy control subjects with and without genu recurvatum. ACL-deficient subjects without genu recurvatum showed a decrease in knee angles during the stance phase and a decrease in extension moments during the early stance phase compared with ACL-deficient subjects with genu recurvatum and controls. In contrast, neither knee angles nor extension moments during the stance phase differed significantly between ACL-deficient subjects with genu recurvatum and controls.

Conclusions

This study provides clinically relevant information regarding the effects of genu recurvatum on gait parameters. The results suggest that in ACL injuries, the presence of genu recurvatum alters gait pattern. Consideration of the presence of genu recurvatum would be useful during rehabilitation following ACL injuries or ACL reconstruction.

Level of evidence

II. Prospective comparative study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ageberg E, Fridén T (2008) Normalized motor function but impaired sensory function after unilateral non-reconstructed ACL injury: patients compared with uninjured controls. Knee Surg Sports Traumatol Arthrosc 16:449–456

    Article  PubMed  Google Scholar 

  2. Alkjær T, Simonsen EB, Jørgensen U, Dyhre-Poulsen P (2003) Evaluation of the walking pattern in two types of patients with anterior cruciate ligament deficiency: copers and non-copers. Eur J Appl Physiol 89:301–308

    Article  PubMed  Google Scholar 

  3. Alkjær T, Henriksen M, Simonsen EB (2010) Different knee joint loading patterns in ACL deficient copers and non-copers during walking. Knee Surg Sports Traumatol Arthrosc 19:615–621

    Article  PubMed  Google Scholar 

  4. Andriacchi TP, Alexander EJ, Toney MK, Dyrby C, Sum J (1998) A point cluster method for in vivo motion analysis: applied to a study of knee kinematics. J Biomech Eng 120:743–749

    Article  PubMed  CAS  Google Scholar 

  5. Andriacchi TP, Birac D (1993) Functional testing in the anterior cruciate ligament-deficient knee. Clin Orthop Relat Res 288:40–47

    PubMed  Google Scholar 

  6. Beard DJ, Soundarapandian RS, O’Connor JJ, Dodd CAF (1996) Gait and electromyographic analysis of anterior cruciate ligament deficient subjects. Gait Posture 4:83–88

    Article  Google Scholar 

  7. Benedetti MG, Bonato P, Catani F, D’Alessio T, Knaflitz M, Marcacci M, Simoncini L (1999) Myoelectric activation pattern during gait in total knee replacement: relationship with kinematics, kinetics, and clinical outcome. IEEE Trans Rehabil Eng 7:140–149

    Article  PubMed  CAS  Google Scholar 

  8. Berchuck M, Andriacchi T, Bach B, Reider B (1990) Gait adaptations by patients who have a deficient anterior cruciate ligament. J Bone Joint Surg Am 72:871–877

    PubMed  CAS  Google Scholar 

  9. Brandsson S, Karlsson J, Eriksson BI, Kärrholm J (2001) Kinematics after tear in the anterior cruciate ligament: dynamic bilateral radiostereometric studies in 11 patients. Acta Orthop Scand 72:372–378

    Article  PubMed  CAS  Google Scholar 

  10. Bulgheroni P, Bulgheroni MV, Andrini L, Guffanti P, Castelli C (1997) Walking in anterior cruciate ligament injuries. Knee 4:159–165

    Article  Google Scholar 

  11. Bulgheroni P, Bulgheroni MV, Andrini L, Guffanti P, Giughello A (1997) Gait patterns after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 5:14–21

    Article  PubMed  CAS  Google Scholar 

  12. Butler DL, Noyes FR, Grood ES (1980) Ligamentous restraints to anterior-posterior drawer in the human knee. A biomechanical study. J Bone Joint Surg Am 62:259–270

    PubMed  CAS  Google Scholar 

  13. Chmielewski TL, Hurd WJ, Snyder-Mackler L (2005) Elucidation of a potentially destabilizing control strategy in ACL deficient non-copers. J Electromyogr Kinesiol 15:83–92

    Google Scholar 

  14. Davis RB, Õunpuu S, Tyburski D, Gage JR (1991) A gait analysis data collection and reduction technique. Hum Mov Sci 10:575–587

    Article  Google Scholar 

  15. Ferber R, Osternig LR, Woollacott MH, Wasielewski NJ, Lee JH (2002) Gait mechanics in chronic ACL deficiency and subsequent repair. Clin Biomech 17:274–285

    Article  Google Scholar 

  16. Gokeler A, Schmalz T, Knopf E, Freiwald J, Blumentritt S (2003) The relationship between isokinetic quadriceps strength and laxity on gait analysis parameters in anterior cruciate ligament reconstructed knees. Knee Surg Sports Traumatol Arthrosc 11:372–378

    Article  PubMed  Google Scholar 

  17. Grood ES, Suntay WJ, Noyes FR, Butler DL (1984) Biomechanics of the knee-extension exercise. Effect of cutting the anterior cruciate ligament. J Bone Joint Surg Am 66:725–734

    PubMed  CAS  Google Scholar 

  18. Hogue RE, McCandless S (1983) Genu recurvatum: auditory biofeedback treatment for adult patients with stroke or head injuries. Arch Phys Med Rehabil 64:368–370

    PubMed  CAS  Google Scholar 

  19. Hurd WJ, Snyder-Mackler L (2007) Knee instability after acute ACL rupture affects movement patterns during the mid-stance phase of gait. J Orthop Res 25:1369–1377

    Article  PubMed  Google Scholar 

  20. Kadaba MP, Ramakrishnan HK, Wootten ME (1990) Measurement of lower extremity kinematics during level walking. J Orthop Res 8:383–392

    Article  PubMed  CAS  Google Scholar 

  21. Kerrigan DC, Deming LC, Holden MK (1996) Knee recurvatum in gait: a study of associated knee biomechanics. Arch Phys Med Rehabil 77:645–650

    Article  PubMed  CAS  Google Scholar 

  22. Lewek M, Rudolph K, Axe M, Snyder-Mackler L (2002) The effect of insufficient quadriceps strength on gait after anterior cruciate ligament reconstruction. Clin Biomech 17:56–63

    Google Scholar 

  23. Lindström M, Felländer-Tsai L, Wredmark T, Henriksson M (2010) Adaptations of gait and muscle activation in chronic ACL deficiency. Knee Surg Sports Traumatol Arthrosc 18:106–114

    Article  PubMed  Google Scholar 

  24. Markolf KL, Kochan A, Amstutz HC (1984) Measurement of knee stiffness and laxity in patients with documented absence of the anterior cruciate ligament. J Bone Joint Surg Am 66:242–252

    PubMed  CAS  Google Scholar 

  25. Morris ME, Matyas TA, Bach TM, Goldie PA (1992) Electrogoniometric feedback: its effect on genu recurvatum in stroke. Arch Phys Med Rehabil 73:1147–1154

    PubMed  CAS  Google Scholar 

  26. Myer G, Ford K, Paterno M, Nick T, Hewett T (2008) The effects of generalized joint laxity on risk of anterior cruciate ligament injury in young female athletes. Am J Sports Med 36:1073–1080

    Article  PubMed  Google Scholar 

  27. Nigg BM, Fisher V, Ronsky JL (1994) Gait characteristics as a function of age and gender. Gait Posture 2:213–220

    Article  Google Scholar 

  28. Noyes FR, Dunworth LA, Andriacchi TP, Andrews M, Hewett TE (1996) Knee hyperextension gait abnormalities in unstable knees: recognition and preoperative gait retraining. Am J Sports Med 24:35–45

    Article  PubMed  CAS  Google Scholar 

  29. Noyes FR, Schipplein OD, Andriacchi TP, Saddemi SR, Weise M (1992) The anterior cruciate ligament-deficient knee with varus alignment. An analysis of gait adaptations and dynamic joint loadings. Am J Sports Med 20:707–716

    Article  PubMed  CAS  Google Scholar 

  30. Oberg T, Karsznia A, Oberg K (1993) Basic gait parameters: reference data for normal subjects, 10–79 years of age. J Rehabil Res Dev 30:210–223

    PubMed  CAS  Google Scholar 

  31. Patel RR, Hurwitz DE, Bush-Joseph CA, Bach BR Jr, Andriacchi TP (2003) Comparison of clinical and dynamic knee function in patients with anterior cruciate ligament deficiency. Am J Sports Med 31:68–74

    PubMed  Google Scholar 

  32. Perry J (1992) Gait analysis normal and pathological function. SLACK Inc., Thorofare, NJ, 9–18 (223–244)

  33. Ramesh R, Von Arx O, Azzopardi T, Schranz PJ (2005) The risk of anterior cruciate ligament rupture with generalised joint laxity. J Bone Joint Surg Br 87:800–803

    Article  PubMed  CAS  Google Scholar 

  34. Roberts CS, Rash GS, Honaker JT, Wachowiak MP, Shaw JC (1999) A deficient anterior cruciate ligament does not lead to quadriceps avoidance gait. Gait Posture 10:189–199

    Article  PubMed  CAS  Google Scholar 

  35. Rudolph KS, Axe MJ, Buchanan TS, Scholz JP, Snyder-Mackler L (2001) Dynamic stability in the anterior cruciate ligament deficient knee. Knee Surg Sports Traumatol Arthrosc 9:62–71

    Article  PubMed  CAS  Google Scholar 

  36. Rudolph KS, Eastlack ME, Axe MJ, Snyder-Mackler L (1998) 1998 Basmajian Student Award Paper Movement patterns after anterior cruciate ligament injury: a comparison of patients who compensate well for the injury and those who require operative stabilization. J Electromyogr Kinesiol 8:349–362

    Article  PubMed  CAS  Google Scholar 

  37. Setton LA, Mow VC, Howell DS (1995) Mechanical behavior of articular cartilage in shear is altered by transection of the anterior cruciate ligament. J Orthop Res 13:473–482

    Article  PubMed  CAS  Google Scholar 

  38. Snyder-Mackler L, Delitto A, Bailey SL, Stralka SW (1995) Strength of the quadriceps femoris muscle and functional recovery after reconstruction of the anterior cruciate ligament. A prospective, randomized clinical trial of electrical stimulation. J Bone Joint Surg Am 77:1166–1173

    PubMed  CAS  Google Scholar 

  39. Torry MR, Decker MJ, Ellis HB, Shelburne KB, Sterett WI, Steadman JR (2004) Mechanisms of compensating for anterior cruciate ligament deficiency during gait. Med Sci Sports Exerc 36:1403–1412

    Article  PubMed  Google Scholar 

  40. Uhorchak JM, Scoville CR, Williams G, Arciero R, Pierre PS, Taylor D (2003) Risk factors associated with noncontact injury of the anterior cruciate ligament: a prospective four-year evaluation of 859 West Point cadets. Am J Sports Med 31:831–842

    PubMed  Google Scholar 

  41. Von Porat A, Henriksson M, Holmström E, Thorstensson CA, Mattsson L, Roos EM (2006) Knee kinematics and kinetics during gait, step and hop in males with a 16 years old ACL injury compared with matched controls. Knee Surg Sports Traumatol Arthrosc 14:546–554

    Article  Google Scholar 

  42. Wexler G, Hurwitz D, Bush-Joseph C, Andriacchi T, Bach BJ (1998) Functional gait adaptations in patients with anterior cruciate ligament deficiency over time. Clin Orthop Relat Res 348:166–175

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The present study was funded in part by research assistance from ‘Establishment of the sport medical support system’, a partnership program with the Ministry of Education, Culture, Sports, Science, and Technology. We thank Yumi Horita, Tomoo Hamano, Makoto Shiozaki, Hiromitsu Yamamoto and Kiyomi Takatsuka for their assistance with the measurement and analysis of the gait data.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Katsuhiro Kawahara or Etsuo Chosa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawahara, K., Sekimoto, T., Watanabe, S. et al. Effect of genu recurvatum on the anterior cruciate ligament-deficient knee during gait. Knee Surg Sports Traumatol Arthrosc 20, 1479–1487 (2012). https://doi.org/10.1007/s00167-011-1701-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-011-1701-z

Keywords

Navigation