Skip to main content
Log in

Analysis of sequential cytokine release after ACL reconstruction

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

Rupture of the anterior cruciate ligament is common and may necessitate surgical reconstruction. Surgical reconstruction aims to restore normal kinematics and biology within the knee. The acute phase response after surgical reconstruction remains poorly defined but may influence graft integration through modulation of host tissue remodelling.

Methods

The very early host production of key cytokines after surgery was studied. A consecutive series of 14 patients undergoing reconstructive surgery were studied per-operatively, 1 and 6 h after surgery, examining the hypothesis that the acute phase response would be non-specific but consistent between individuals, demonstrating increases of pro-inflammatory cytokines.

Results

A consistent increased release of monocyte-driven, non-specific, IL-1 and IL-6 release but not T cell-derived IL-2 was found. Perhaps, more interestingly, very early high concentrations of secondary growth factors PDGF and TGF-β suggestive of an anabolic response were found.

Conclusion

These data support the contention that an anabolic response starts earlier than previously thought within the surgically reconstructed knee.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Assoian RK, Sporn MB (1986) Type beta transforming growth factor in human platelets: release during platelet degranulation and action on vascular smooth muscle cells. J Cell Biol 102:1217–1223

    Article  PubMed  CAS  Google Scholar 

  2. Bennett NT, Schultz GS (1993) Growth factors and wound healing: part II. role in normal and chronic wound healing. Am J Surg 166:74–81

    Article  PubMed  CAS  Google Scholar 

  3. Bennett NT, Schultz GS (1993) Growth factors and wound healing: biochemical properties of growth factors and their receptors. Am J Surg 165:728–737

    Article  PubMed  CAS  Google Scholar 

  4. Beynnon BD, Fleming BC, Labovitch R, Parsons B (2002) Chronic anterior cruciate ligament deficiency is associated with increased anterior translation of the tibia during the transition from non-weightbearing to weightbearing. J Orthop Res 20:332–337

    Article  PubMed  Google Scholar 

  5. Beynnon BD, Johnson RJ, Fleming BC, Kannus P, Kaplan M, Samani J, Renstrom P (2002) Anterior cruciate ligament replacement: comparison of bone-patellar tendon-bone grafts with two-strand hamstring grafts. A prospective, randomized study. J Bone Joint Surg [Am] 84:1503–1513

    Google Scholar 

  6. Blickenstaff KR, Grana WA, Egle D (1997) Analysis of a semitendinosus autograft in a rabbit model. Am J Sports Med 25:554–559

    Article  PubMed  CAS  Google Scholar 

  7. Border WA, Ruoslahti E (1992) Transforming growth factor-beta in disease: the dark side of tissue repair. J Clin Invest 90:1–7

    Article  PubMed  CAS  Google Scholar 

  8. Fitzgerald KA, O’Neill AJ, Gearing AJH, Callard RF (2001) The cytokine factsbook. 2nd Edn, Academic Press, London Chapter 2, pp 12–19

  9. Cameron ML, Fu FH, Paessler HH, Schneider M, Evans CH (1994) Synovial fluid cytokine concentrations as possible prognostic indicators in the ACL-deficient knee. Knee Surg Sports Traumatol Arthrosc 2:38–44

    Article  PubMed  CAS  Google Scholar 

  10. Cameron M, Buchgraber A, Paessler H, Vogt M, Thonar E, Fu F, Evans C (1997) The natural history of the anterior cruciate ligament-deficient knee. changes in synovial fluid cytokine and keratan sulfate concentrations. Am J Sports Med 25:751–754

    Article  PubMed  CAS  Google Scholar 

  11. Cawston TE, Wilson AJ (2006) Understanding the role of tissue degrading enzymes and their inhibitors in development and disease. Best Pract Res Clin Rheumatol 20:983–1002

    Article  PubMed  CAS  Google Scholar 

  12. Chu CR, Coyle CH, Chu CT, Szczodry M, Seshadri V, Karpie JC, Cieslak KM, Pringle EK (2010) In vivo effects of single intra-articular injection of 0.5% bupivacaine on articular cartilage. J Bone Joint Surg [Am] 92:599–608

    Article  Google Scholar 

  13. Cohen S, Carpenter G (1975) Human epidermal growth factor: isolation and chemical and biological properties. Proc Natl Acad Sci 72:1317–1321

    Article  PubMed  CAS  Google Scholar 

  14. Cuellar JM, Scuderi GJ, Cuellar VG, Golish SR, Yeomans DC (2009) Diagnostic utility of cytokine biomarkers in the evaluation of acute knee pain. J Bone Joint Surg [Am] 91:2313–2320

    Article  Google Scholar 

  15. Cuellar JM, Golish SR, Yeomans DC, Scuderi GJ (2010) Cytokine profiling in acute anterior cruciate ligament injury. Arthroscopy 26:1296–1301

    Article  PubMed  Google Scholar 

  16. Deehan DJ, Cawston TE (2005) The biology of integration of the anterior cruciate ligament. J Bone Joint Surg [Br] 87:889–895

    Article  CAS  Google Scholar 

  17. Demirag B, Sarisozen B, Ozer O, Kaplan T, Ozturk C (2005) Enhancement of tendon-bone healing of anterior cruciate ligament grafts by blockage of matrix metalloproteinases. J Bone Joint Surg [Am] 87:2401–2410

    Article  Google Scholar 

  18. Dinarello CA (1994) The biological properties of interleukin-1. Eur Cytokine Netw 5:517–531

    PubMed  CAS  Google Scholar 

  19. Duthon VB, Barea C, Abrassart S, Fasel JH, Fritschy D, Menetrey J (2006) Anatomy of the anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc 14:204–213

    Article  PubMed  CAS  Google Scholar 

  20. Fibbe WE, Schaafsma MR, Falkenburg JH, Willemze R (1989) The biological activities of interleukin-1. Blut 59:147–156

    Article  PubMed  CAS  Google Scholar 

  21. Gearing AJ, Beckett P, Christodoulou M et al (1994) Processing of tumour necrosis factor-alpha precursor by metalloproteinases. Nature 370:555–557

    Article  PubMed  CAS  Google Scholar 

  22. Gianotti SM, Marshall SW, Hume PA, Bunt L (2009) Incidence of anterior cruciate ligament injury and other knee ligament injuries: a national population-based study. J Sci Med Sport 12:622–627

    Article  PubMed  Google Scholar 

  23. Grana WA, Egle DM, Mahnken R, Goodhart CW (1994) An analysis of autograft fixation after anterior cruciate ligament reconstruction in a rabbit model. Am J Sports Med 22:344–351

    Article  PubMed  CAS  Google Scholar 

  24. Griffin LY, Agel J, Albohm MJ et al (2000) Noncontact anterior cruciate ligament injuries: risk factors and prevention strategies. J Am Acad Orthop Surg 8:141–150

    PubMed  CAS  Google Scholar 

  25. Higuchi H, Shirakura K, Kimura M, Terauchi M, Shinozaki T, Watanabe H, Takagishi K (2006) Changes in biochemical parameters after anterior cruciate ligament injury. Int Orthop 30:43–47

    Article  PubMed  CAS  Google Scholar 

  26. Irie K, Uchiyama E, Iwaso H (2003) Intraarticular inflammatory cytokines in acute anterior cruciate ligament injured knee. Knee 10:93–96

    Article  PubMed  Google Scholar 

  27. Jones SA, Horiuchi S, Topley N, Yamamoto N, Fuller GM (2001) The soluble interleukin 6 receptor: mechanisms of production and implications in disease. FASEB J 15:43–58

    Article  PubMed  CAS  Google Scholar 

  28. Kapoor B, Clement DJ, Kirkley A, Maffulli N (2004) Current practice in the management of anterior cruciate ligament injuries in the United Kingdom. Br J Sports Med 38:542–544

    Article  PubMed  CAS  Google Scholar 

  29. Marks PH, Donaldson MLC (2005) Inflammatory cytokine profiles associated with chondral damage in the anterior cruciate Ligament–Deficient knee. Arthrosc J Arthrosc Relat Surg 21:1342–1347

    Article  Google Scholar 

  30. McFarland EG (1993) The biology of anterior cruciate ligament reconstructions. Orthopedics 16:403–410

    PubMed  CAS  Google Scholar 

  31. McGeehan GM, Becherer JD, Bast RC Jr et al (1994) Regulation of tumour necrosis factor-alpha processing by a metalloproteinase inhibitor. Nature 370:558–561

    Article  PubMed  CAS  Google Scholar 

  32. Menetrey J, Duthon VB, Laumonier T, Fritschy D (2008) “Biological failure” of the anterior cruciate ligament graft. Knee Surg Sports Traumatol Arthrosc 16:224–231

    Article  PubMed  CAS  Google Scholar 

  33. Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z (1999) Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 13:9–22

    PubMed  CAS  Google Scholar 

  34. Nugent MA, Iozzo RV (2000) Fibroblast growth factor-2. Int J Biochem Cell Biol 32:115–120

    Article  PubMed  CAS  Google Scholar 

  35. Rodeo SA, Arnoczky SP, Torzilli PA, Hidaka C, Warren RF (1993) Tendon-healing in a bone tunnel. A biomechanical and histological study in the dog. J Bone Joint Surg [Am] 75:1795–1803

    CAS  Google Scholar 

  36. Davies PJ, Martin SJ, Burton DR, Roitt IM (2006) Chapter 5, The primary interaction with antigen, in Essential Immunology, Eleventh Edition, Wiley-Blackman, London, pp 86–110

  37. Senthilkumaran S, Tate R, Read J, Sutherland AG (2010) The use of intra-articular morphine in addition to local anaesthetic for post-operative analgesia in anterior cruciate ligament reconstruction: a prospective randomised controlled trial. Knee Surg Sports Traumatol Arthrosc 18:731–735

    Article  PubMed  CAS  Google Scholar 

  38. Steed DL (1998) Modifying the wound healing response with exogenous growth factors. Clin Plast Surg 25:397–405

    PubMed  CAS  Google Scholar 

  39. Okada H, Banchereau J, Lotze MT (2003). Interleukin-4. In: Thomson AW, Lotze MT (eds) The cytokine handbook, 4th edn. Academic Press, London, pp 227–264

  40. Tohyama H, Yasuda K (2005) Anterior cruciate ligament (ACL) healing: ACL graft biology. Sports Med Arthrosc Rev 13:156–160

    Article  Google Scholar 

  41. Tyler TF, McHugh MP, Gleim GW, Nicholas SJ (1999) Association of KT-1000 measurements with clinical tests of knee stability 1 year following anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther 29:540–545

    PubMed  CAS  Google Scholar 

  42. Werner S, Grose R (2003) Regulation of wound healing by growth factors and cytokines. Physiol Rev 83:835–870

    PubMed  CAS  Google Scholar 

  43. Woo SL, Abramowitch SD, Kilger R, Liang R (2006) Biomechanics of knee ligaments: Injury, healing, and repair. J Biomech 39:1–20

    Article  PubMed  Google Scholar 

  44. Yoshiya S, Nagano M, Kurosaka M, Muratsu H, Mizuno K (2000) Graft healing in the bone tunnel in anterior cruciate ligament reconstruction. Clin Orthop Relat Res 376:278–286

    Article  PubMed  Google Scholar 

  45. Zysk SP, Fraunberger P, Veihelmann A et al (2004) Tunnel enlargement and changes in synovial fluid cytokine profile following anterior cruciate ligament reconstruction with patellar tendon and hamstring tendon autografts. Knee Surg Sports Traumatol Arthrosc 12:98–103

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. J. Deehan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayward, A.L., Deehan, D.J., Aspden, R.M. et al. Analysis of sequential cytokine release after ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 19, 1709–1715 (2011). https://doi.org/10.1007/s00167-011-1486-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-011-1486-0

Keywords

Navigation