Skip to main content
Log in

High-flexion total knee arthroplasty improves flexion of stiff knees

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

High-flexion knee prosthesis designs are generally thought to be of benefit only in patients with a satisfactory preoperative flexion angle. The aim of the study was to evaluate whether high-flexion designs were indeed worthless in osteoarthritis patients with severe preoperative flexion limitation.

Methods

The postoperative maximum flexion was compared in osteoarthritis patients with a preoperative maximum flexion of 100° or less, using LPS and LPS-flex implants (NexGen®; Zimmer, Warsaw, IN) in total knee arthroplasties. Data on 39 knees in the LPS group and 41 in the LPS-flex group, with a minimum of 2 years of follow-up, were reviewed retrospectively, focused on the postoperative maximum flexion.

Results

Two years after operation, the LPS-flex group had a mean postoperative maximum flexion of 131 ± 10° (range, 105–140°), which was significantly higher than the 121 ± 12° (range, 95–140°) in the LPS group (P < 0.001). In the LPS-flex group, about half of the knees (n = 18, 44%) could achieve a maximum flexion of 140° postoperatively, but in the LPS group only five knees (13%) achieved a maximum flexion of 140°.

Conclusion

Despite a different period of the operation between groups, this study suggested that osteoarthritis patients with severe preoperative flexion limitation could achieve more postoperative gain in flexion when a high-flexion prosthesis was used, compared to the flexion obtained using a standard prosthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Anouchi YS, McShane M, Kelly F Jr et al (1996) Range of motion in total knee replacement. Clin Orthop Relat Res 331:87–92

    Article  PubMed  Google Scholar 

  2. Argenson JN, Komistek RD, Mahfouz M et al (2004) A high flexion total knee arthroplasty design replicates healthy knee motion. Clin Orthop Relat Res 428:174–179

    Article  PubMed  Google Scholar 

  3. Argenson JN, Scuderi GR, Komistek RD et al (2005) In vivo kinematic evaluation and design considerations related to high flexion in total knee arthroplasty. J Biomech 38:277–284

    Article  PubMed  Google Scholar 

  4. Banks S, Bellemans J, Nozaki H et al (2003) Knee motions during maximum flexion in fixed and mobile-bearing arthroplasties. Clin Orthop Relat Res 410:131–138

    Article  PubMed  Google Scholar 

  5. Bellemans J, Banks S, Victor J et al (2002) Fluoroscopic analysis of the kinematics of deep flexion in total knee arthroplasty. Influence of posterior condylar offset. J Bone Joint Surg Br 84:50–53

    Article  PubMed  CAS  Google Scholar 

  6. Bin SI, Nam TS (2007) Early results of high-flex total knee arthroplasty: comparison study at 1 year after surgery. Knee Surg Sports Traumatol Arthrosc 15:350–355

    Article  PubMed  Google Scholar 

  7. Cibere J, Bellamy N, Thorne A et al (2004) Reliability of the knee examination in osteoarthritis: effect of standardization. Arthritis Rheum 50:458–468

    Article  PubMed  Google Scholar 

  8. Faul F, Erdfelder E, Lang AG et al (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39:175–191

    Article  PubMed  Google Scholar 

  9. Gandhi R, Tso P, Davey JR et al (2009) High-flexion implants in primary total knee arthroplasty: a meta-analysis. Knee 16:14–17

    Article  PubMed  Google Scholar 

  10. Gupta SK, Ranawat AS, Shah V et al (2006) The P.F.C. sigma RP-F TKA designed for improved performance: a matched-pair study. Orthopedics 29:S49–S52

    PubMed  Google Scholar 

  11. Huddleston JI, Scarborough DM, Goldvasser D et al (2009) 2009 Marshall Urist Young Investigator Award: how often do patients with high-flex total knee arthroplasty use high flexion? Clin Orthop Relat Res 467:1898–1906

    Article  PubMed  Google Scholar 

  12. Jakobsen TL, Christensen M, Christensen SS et al (2009) Reliability of knee joint range of motion and circumference measurements after total knee arthroplasty: does tester experience matter? Physiother Res Int doi:10.1002/pri.450

  13. Kim YH, Choi Y, Kim JS (2009) Range of motion of standard and high-flexion posterior cruciate-retaining total knee prostheses a prospective randomized study. J Bone Joint Surg Am 91:1874–1881

    Article  PubMed  Google Scholar 

  14. Kim YH, Choi Y, Kwon OR et al (2009) Functional outcome and range of motion of high-flexion posterior cruciate-retaining and high-flexion posterior cruciate-substituting total knee prostheses. A prospective, randomized study. J Bone Joint Surg Am 91:753–760

    Article  PubMed  Google Scholar 

  15. Kim YH, Sohn KS, Kim JS (2005) Range of motion of standard and high-flexion posterior stabilized total knee prostheses. A prospective, randomized study. J Bone Joint Surg Am 87:1470–1475

    Article  PubMed  Google Scholar 

  16. Komistek RD, Scott RD, Dennis DA et al (2002) In vivo comparison of femorotibial contact positions for press-fit posterior stabilized and posterior cruciate-retaining total knee arthroplasties. J Arthroplasty 17:209–216

    Article  PubMed  Google Scholar 

  17. Kotani A, Yonekura A, Bourne RB (2005) Factors influencing range of motion after contemporary total knee arthroplasty. J Arthroplasty 20:850–856

    Article  PubMed  Google Scholar 

  18. Lavernia C, D’Apuzzo M, Rossi MD et al (2008) Accuracy of knee range of motion assessment after total knee arthroplasty. J Arthroplasty 23:85–91

    Article  PubMed  Google Scholar 

  19. Li G, Most E, Sultan PG et al (2004) Knee kinematics with a high-flexion posterior stabilized total knee prosthesis: an in vitro robotic experimental investigation. J Bone Joint Surg Am 86:1721–1729

    PubMed  Google Scholar 

  20. Massin P, Gournay A (2006) Optimization of the posterior condylar offset, tibial slope, and condylar roll-back in total knee arthroplasty. J Arthroplasty 21:889–896

    Article  PubMed  Google Scholar 

  21. Moro-oka T, Matsuda S, Miura H et al (2002) Patellar tracking and patellofemoral geometry in deep knee flexion. Clin Orthop Relat Res 394:161–168

    Article  PubMed  Google Scholar 

  22. Myles CM, Rowe PJ, Walker CR et al (2002) Knee joint functional range of movement prior to and following total knee arthroplasty measured using flexible electrogoniometry. Gait Posture 16:46–54

    Article  PubMed  Google Scholar 

  23. Nakagawa S, Kadoya Y, Kobayashi A et al (2003) Kinematics of the patella in deep flexion. Analysis with magnetic resonance imaging. J Bone Joint Surg Am 85:1238–1242

    PubMed  Google Scholar 

  24. Ng FY, Wong HL, Yau WP et al (2008) Comparison of range of motion after standard and high-flexion posterior stabilised total knee replacement. Int Orthop 32:795–798

    Article  PubMed  CAS  Google Scholar 

  25. Nutton RW, van der Linden ML, Rowe PJ et al (2008) A prospective randomised double-blind study of functional outcome and range of flexion following total knee replacement with the NexGen standard and high flexion components. J Bone Joint Surg Br 90:37–42

    Article  PubMed  CAS  Google Scholar 

  26. Parsley BS, Engh GA, Dwyer KA (1992) Preoperative flexion. Does it influence postoperative flexion after posterior-cruciate-retaining total knee arthroplasty? Clin Orthop Relat Res 275:204–210

    PubMed  Google Scholar 

  27. Ranawat CS (2003) Design may be counterproductive for optimizing flexion after TKR. Clin Orthop Relat Res 416:174–176

    Article  PubMed  Google Scholar 

  28. Ritter MA (2006) High-flexion knee designs: more hype than hope? in the affirmative. J Arthroplasty 21:40–41

    Article  PubMed  Google Scholar 

  29. Ritter MA, Berend ME, Harty LD et al (2004) Predicting range of motion after revision total knee arthroplasty: clustering and log-linear regression analyses. J Arthroplasty 19:338–343

    Article  PubMed  Google Scholar 

  30. Ritter MA, Harty LD, Davis KE et al (2003) Predicting range of motion after total knee arthroplasty. Clustering, log-linear regression, and regression tree analysis. J Bone Joint Surg Am 85:1278–1285

    PubMed  Google Scholar 

  31. Seon JK, Park SJ, Lee KB et al (2009) Range of motion in total knee arthroplasty: a prospective comparison of high-flexion and standard cruciate-retaining designs. J Bone Joint Surg Am 91:672–679

    Article  PubMed  Google Scholar 

  32. Sultan PG, Most E, Schule S et al (2003) Optimizing flexion after total knee arthroplasty: advances in prosthetic design. Clin Orthop Relat Res 416:167–173

    Article  PubMed  Google Scholar 

  33. Victor J, Ries M, Bellemans J et al (2007) High-flexion, motion-guided total knee arthroplasty: who benefits the most? Orthopedics 30:77–79

    PubMed  CAS  Google Scholar 

  34. Weeden SH, Schmidt R (2007) A randomized, prospective study of primary total knee components designed for increased flexion. J Arthroplasty 22:349–352

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0001733).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong-Il Bin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, BS., Kim, JM., Lee, SJ. et al. High-flexion total knee arthroplasty improves flexion of stiff knees. Knee Surg Sports Traumatol Arthrosc 19, 936–942 (2011). https://doi.org/10.1007/s00167-010-1272-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-010-1272-4

Keywords

Navigation